Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 55-62
(© 2008 NCC Publisher

Parallel simulation of asynchronous Cellular
Automata evolution

K.V. Kalgin

Abstract. For simulating physical and chemical processes on molecular level,
asynchronous cellular automata with probabilistic transition rules are widely used
being sometimes referred to as Monte-Carlo methods. The simulation requires a
huge cellular space and millions of iterative steps for obtaining the CA evolution
representing a real scene of the process. This may be attained by allocating the
CA evolution program onto a multiprocessor system.

We propose a new parallelization method of asynchronous CA based on its
stochastic properties. The efficiency assessment and experimental results are pre-
sented.

1. Introduction

Currently there are many CA models of a natural process, which have differ-
ent state sets, structures of a cellular space, transition functions, and modes
of operation.

There are two basic CA modes—synchronous and asynchronous. In some
publications, mixed synchronous-asynchronous modes — block-synchronous
and ordered asynchronous— are also used [1].

Asynchronous CA (ACA) are used for simulating physical and chemical
processes on molecular level, for example, to study oscillatory chemical sur-
face reactions [2], absorbtion, sublimation and diffusion of atoms in epitaxial
growth processes|3].

For the ACA simulation of natural processes, much computer power
is needed. The basic CA properties — fine-grained parallelism and local
interactions — make this model attractive. As a matter of fact, the ACA
cannot be so easily parallelized as synchronous CA.

By this moment in the majority of coarse grained parallelization, the
ACA are represented as a discrete event model. Within this model there are
two methods of parallel simulation [4]: conservative and optimistic. In the
general case of a discrete event, the task the conservative simulation method
is considered to be inefficient, hence the optimistic simulation is generally
used.

For example in [5], the ACA is represented as a discrete event model,
and the optimistic method based on Time Warp algorithm is used for the
parallel simulation.

56 K.V. Kalgin

This paper is aimed to proposing a coarse grained ACA parallelization
method, based on stochastic properties of the ACA, and studying its effi-
ciency. Apart introduction and conclusion, this paper contains four sections:
ACA model (Section 2), parallel algorithm (Section 3), efficiency assess-
ment (Section 4), and experiments results of the method testing on Ising
CA-model (Section 5).

2. Asynchronous Cellular Automata

Asynchronous Cellular Automata are specified by the following tuple:
ACA = (2%, A,V,).

A pair (z,a) € Z% x A is called a cell, where a € A is a state of the cell and
z € Z%is its coordinates.

A set of cells Q = {(x;,a;)} C Z9x Ais called a cellular array if there does
not exist two cells with equal coordinates and {z | (z,a) € Q} = Z¢. Since
between the cells in a cellular array and their coordinates there exists a one-
to-one correspondence, we will further identify a cell with its coordinates.

The ACA parameters are as follows:

Z% is a finite subset of discrete d-dimensional space, represented as a set
of vectors, which define a set of cell positions.

In this paper, we use a 2D rectangular space Z2:

72 ={(i,§) | 1<i <Ny, 1<j <N}

A is an alphabet, i.e., a set of cell states.

<

is a template, i.e., a finite set of vectors from Z%:
V = {v1,v2,..., vy}
The template determines the neighborhood of a cell x :
V(z) ={z,x + v,z +va,...,z + vy},

the cell being called a base cell of the template.

Further, the von Neumann neighborhood V' = {(—1,0), (0, —1), (1,0),
(0,1)} is used.

@ is a transition function with neighboring cell states as arguments and
a new state of the cell, as a result: ¢ : AVl — A. Changing the cell
state by a transition function is called an updating of a cell.

The ACA simulation is split into iterations. An iteration comprises
|Z?| = N, N, updating of cells in a random order.

Parallel simulation of asynchronous Cellular Automata evolution 57

3. Parallel algorithm

For parallelization, a cellular array is partitioned into the disjoint domains
Dy, Do, ..., D,, which are mapped onto parallel processors. A set of bound-
ary cells of a domain Dy, is denoted by By, = {c € Dy, | 3D; : j # k &
V(C) N Dj 7& @}

3.1. Stochastic properties of the ACA. Let us consider thebehavior
of an ACA implemented on one processor, the cellular array being logically
partitioned into domains.

Let C = {c1,...,¢z2 | ¢i € Z?} be alist of cells, which determines the
order of cells updatings in one iteration. Let us denote its different disjoint
subsets as follows:

in, ={ceC|ce Dy\ B},
boundy, = {c € C | ¢ € By},
outy, = {c € C | ce Z*\ D;}.

Let us consider Ly = {I& 1}, ... ,l‘kboundk‘}, where & = 0 and ¥ are num-
bers of updating steps of cells ¢ € By, such that {¢;x | 1 <i < |boundy|} =
boundy,. '

Let IF = {c; € C | ¢; € ing & I¥ | < i < IF} be a list of cells, which are
updated inside the domain Dy between two updatings on its boundary.

Then, with C' cellular array partitioning, we obtain a unique set of
triplets Y(C):

Y(C) = {(Ly,boundy, I*) | 1 < k < p, 1 <r < |boundy|},

and the contrary statement is wrong.

Let us consider another updating order C’ with the same Y (C") = T(C).
Then C' and C’ may differ only in ordering of cells belonging to different
domains’ Iff. Although, the ordering between cells from each domain and
its boundary, and also between the domains boundaries, remain the same.
Hence, execution of C' and C’ with the same initial cellular arrays finalize
with the same finale cellular arrays. So, they are called equivalent.

So, for execution of the next iteration it is sufficient to form only Y(C),
but not the full order. Since for each iteration the order is generated by a
uniform random generator, then Y(C') is formed according to the following
statements:

P =1k =t]t>0)=1-8)""6 (1)

where (), = |Bg|/|Z?|, and

58 K.V. Kalgin

P(II}| = t) = Chak(1 — ap)* (2)

is a binomial distribution Bin(A, ay), where A =¥ —I* |« = |Dy \ Bx|/
|Z2\ Bi| and C% denotes number of t-element subsets of an A-element set.

So, the algorithm of YT(C) is formed as follows:

1. Generation of I¥ is performed according to (1), with determination
|bound| and |Lg|: [boundy| = |Li| — 1, ¥ < |72, where IF <

|boundy|
lﬁ)ound“ holds for each i < |boundg|.

Let = be an exponential-distributed random variable with parameter
A = —log(1—B), then P(|z] = t) = e A (1—e) = (1-54) "1 By
Hence,

ly = Iy + [randE(—log(1 — 54))], (3)

where randE(\) is the number of exponential-distributed pseudo-ran-
dom numbers obtained by the generator.

2. Generation of |I¥|. Since the considered binomial distribution with
a large A has a good approximation by the normal distribution
N(akA, ap(l — ag)A), then:

|I£\ = randN(o; A, ax(1 — ag)A), (4)

where randN(n, 02) is the number of normal-distributed pseudo-ran-
dom numbers obtained by the generator.

For small A, a certain number of trials are performed (generation
of uniformly-distributed pseudo-random numbers from [0, 1]) and cal-
culation of “passed” trials (the number of generated numbers from

[0, ag]).
3. Generation of bound;, and IS elements. The sizes of the bound,,

and I;f are already known, but the cells coordinates are not. Such
coordinates are generated by a uniformly-distributed pseudo-random
numbers generator.

Let us note, that Y(C) obtained by this algorithm determines a set
of equivalent and equal-size lists, whose size is a random variable with an
expected value equal to |Z2|. Nonetheless, further the number of updates in
a cellular array is assumed to be equal to |Z2|.

3.2. Parallel algorithm:

1. Generation of Y(C). Create (L, boundy, I¥) for each domain Dy.
After that, processors with neighboring domains Dy, and Dy exchange
the lists L, boundy and Ly, boundy.

Parallel simulation of asynchronous Cellular Automata evolution 59

2. Execution of an iteration. Cells of each domain Dj, are updated
in consecutive order according to the generated bound; and sz .

If the next cell ¢ € bound;, has number lé? from Lg, then according to
the received Ly, and boundy the required new states of the neighboring
cells ¢ € V(c) are received and a new state of the base cell is sent to
an appropriate processor:

(a) for each neighboring domain Dy and for each updating of the cell
¢ € bound;s with number lf/ € Ly such that lf/ < lf, d eV
and the state of the cell ¢’ has not been received yet after the last
updating, a new state of the boundary cell ¢’ is received from an
appropriate processor.

(b) the transition function ¢ is applied to the cell ¢;

(c) for each neighboring domain Dy, if there exists an updating of
the cell ¢ € bound;, with number lf/ € Ly such that l;-“ < lf,
and ¢ € V(¢), then new state of the boundary cell is sent to an
appropriate processor.

4. Efficiency assessment

Let us consider the case, when a cellular array is decomposed in the domains
of equal size and form. The work time 7}, of one iteration on p processors
can be assessed in the following way:

Tp = |Bk| (Tsend + T5) + [Dk| (T + Trana),

where

T, s the time for generation of two numbers l]]f and |III§|.

Trand is the time for generation of two uniformly-distributed pseudo-random
numbers (cell coordinates).

T, is the time for computing the transition function ¢.

Tyend is the time for transferring a boundary cell state.

The variables T, and T;anq remain unchanged with an increase of the
processors number, Tynq changes insignificantly and T, changes depending
on the size of the domain |Dy| (exactly, it depends on both the domain and
the cache size).

The size of the domains is inversely proportional to the processors num-
ber | Dyl = 122|/p.

The boundary size | By| depends on the processors number and the man-
ner of cellular space partitioning. So, with the cellular space partitioning
on stripes, the size of the boundary does not change with an increase of the

60 K.V. Kalgin

processors number. However, with the cellular space partitioning on rect-
angles we can obtain the inverse proportion with respect to the square root
of the processors number.

If we denote 7 = T, + T}qnq and neglect T, then the parallelization
efficiency can be assessed as follows:

o 7| Dg|
pr 7-’-Dk|'i_,-zﬂsend|Bk|

A:

Therefore for obtaining the efficiency A > «, we need:

‘Dk| > (0% Tsend
|Bk‘ “1l—a 71 °

Assume Tyeng ~ 10007, |Dy| ~ |Bg|? and o = 0.75, then we obtain the
following constraint on the domain size: |Djy| > 3000%. But in the above
assessment the following factors were neglected:

1. Messages can be sent simultaneously with computations to reduce the
work time.

2. For the same cellular array size, the time T, is different for a different
processors number. It also significantly depends on the architecture of
a supercomputer node.

3. For computing a transition function at a boundary cell ¢, we need to
wait only for those new states of the cells ¢/, which are needed for
computation: ¢ € V(c).

In the section below, it is shown that the efficiency about 75% may be
attained on a cluster even when the domain size is less than 3000x3000.

5. Results

We use the Ising model to perform experiments. The Ising model is a popular
model of a system of interacting variables in statistical physics. In terms of
the ACA, it can be described as follows.

Take sets Z? and the Neumann neighborhood V' (Fig-
ure 1), the alphabet A = {—1,+1}, where +1 for an “up”
spin and —1 for a “down” spin.

The total energy of the Ising model is

P=2 Y Y W

Figure 1 (z,a)€Q (y,b)eV (z)

aq

ai | ao a3|

az

The transition function changes the state of the base cell with probability
P, which depends on the energy difference AE between a new configuration
and the previous one (AE = —2ap(a1 + ag + ag + a4)):

Parallel simulation of asynchronous Cellular Automata evolution 61

—ag, with probability P;
¢(ao,ar,az, a3, a4) =

ao, otherwise;
L AFE <0;
| exp(=AE/kT), otherwise.

where k is Boltzmann’s constant, 7 is temperature.

The experiments were performed with a cellular array size equal to | 22| =
Ng-Ny, where N, = 32768 and N, = 2048, and with partitioning of Z? on
stripes along Oy (|Bi| = Ny).

In Figure 2, the efficiency of the proposed parallel algorithm implemen-
tation on supercomputers MVS-15000 (two Power processors on a node)
and MVS-100k (two Xeon processors with four cores, each being on node)
is shown.

1 MVS-100k -
141 g Mvs-15000
124
Z _
5 101
5
=
= 0.8
0.6 ’—‘ |7 |7
0.4 ’7
1 2 4 8 16 32 64 128

Number of processors

Figure 2

As long as APSIS overheads are too large, comparison of the efficiency
was not performed in this paper. The experiments results of parallel imple-
mentation of the Ising model with APSIS are presented in [5].

A significant difference in the behavior between the efficiencies obtained
on supercomputers is explained by their different architectures:

e on the supercomputer MVS-15000, with an increase of the processors
the number portion of cache-misses decreases, so the average time of
the cell state reading decreases, therefore T, decreases (and reaches
the superlinear acceleration);

e because each node of the supercomputer MVS-100k contains eight
cores, the average time of the cell state reading is greater with eight
working processor, than with one working processor.

62 K.V. Kalgin

6. Conclusion

In this paper, we have presented a new coarse grained algorithm of the
ACA parallelization, based on stochastic properties of the ACA, with a good
efficiency. The efficiency assessment was made and experimentally tested.

In the future, we are planning to modify the algorithm and to study
its efficiency on the ACA with different templates, transition functions and
manners of cellular array partitioning.

We are also planning to modify the algorithm for the efficient simulation
on the GPU (Graphics Processing Unit) and multi-core systems.

References

[1] Bandman O.L. Coarse-grained parallelization of cellular-automata simulation
algorithms // Parallel Computing Technologies. — Heidelberg: Springer, 2007.—
P. 370-384.— (LNCS; 4671).

[2] Elokhin V.I., Latkin E.I., Matveev A.V., Gorodetskii V.V. Application of statis-
tical lattice models to the analysis of oscillatory and autowave processes on the
reaction of carbon monoxide oxidation over platinum and palladium surfaces //
Kinetics and Catalysis. — 2003. — Vol. 44, No. 5.—P. 672-700.

[3] Neizvestny I.G., Shwartz N.L., Yanovitskaya Z.Sh., Zverev A.V. 3D-model of
epitaxial growth on porous {111} and {100} Si surfaces // Computer Physics
Communications. —2002. — Vol. 147.—P. 272-275.

[4] Overeinder B.J., Hertzberger L.O., Sloot P.M.A. Parallel discrete event simula-
tion // The Third Workshop Computersystems, Faculty of Electrical Engineer-
ing, Findhoven University, Eindhoven, the Netherlands. —1991.— P. 19-30.

[56] Overeinder B.J., Sloot P.M.A. Extensions to time warp parallel simulation for
spatial decomposed applications / D. Al.-Dabbas, R. Cheng, eds. // Proc. the
Fourth United Kingdom Simulation Society Conference (UKSim99). — Cam-
bridge (UK), 1999.—P. 67-73.

