
Bull. Nov. Comp.Center, Comp. Science, 27 (2008), 51–53
c© 2008 NCC Publisher

Acceleration of linear congruential generators

K.V. Kalgin

Abstract. For implementation of pseudo-random number generators (PRNG),
a linear congruential generator (LCG) is the most frequently used algorithm. The
techniques to increase the efficiency of the LCG based on 64-bit integers and bit-
wise operations are studied. The efficiency of the LCG implementation with the
techniques proposed is experimentally tested.

1. Introduction

The LCG is defined by the recurrence relation:

Xn+1 = (A ·Xn + B) mod M, (1)

where Xn is the n-th number of a generated sequence, A, B, and M are
integer constants that specify the generator.

The form of the LCG with M = 2r is the most frequently used for
generating pseudo-random numbers, where r typically denotes the number
of bits used to represent generated numbers, and A is a sufficiently large
number relatively prime with respect to 2r.

To create a LCG with a large period, we need to increase M , that is, the
number of bits r. For the majority of Monte Carlo problems, r ≤ 64 is quite
sufficient, and r ≤ 128 is more than that, however the PRNG acceleration
is welcome. Hence, an increase in the efficiency of the LCG is needed. In
this paper, the LCG accelerating techniques based on 64-bit integers and
bitwise operations are studied.

Next we consider 40-bit LCG [1] in detail with A = 517, B = 0, M = 240,
with the corresponding period L = 238. It is extensively used and carefully
tested in [1]. A detailed consideration and the source code for the 128-bit
LCG, used for the parallel PRNG[2] and tested in [3], with the corresponding
period 2126, can be found in [4].

2. The LCG implementation

The double precision floating point numbers or several integer numbers for
representing large numbers (exceeding 32-bit) are used in the majority of
implementations to prevent the overflow.

In the standard of C language C99 [5], the following can be found:

1. Definition of new integer types, for example int64_t or uint64_t for
64-bit signed and unsigned integers, respectively.



52 K.V. Kalgin

2. Statement “A computation involving unsigned operands can never
overflow, because a result that cannot be represented by the resulting
unsigned integer is reduced modulo the number that is greater than
the largest value that can be represented by the resulting type” [5].

So, for the LCG implementation with r ≤ 64 according to (1), we can
operate (multiply and sum) with 64-bit integers without being afraid of
overflow, because we need only low-order bits. The program code of the
LCG is as follows.

#include <inttypes.h>
const uint64_t A, B, r;
const uint64_t M = 2r;
uint64_t lcg_r()
{

static uint64_t prev = 1;
prev = (prev * A + B) & (M - 1);
return prev;

}

Particularly, the above 40-bit LCG further referred to as prng40 is im-
plemented in the following way:

#include <inttypes.h>
const uint64_t A = 517;
const uint64_t M = 240;
uint64_t lcg_40b()
{

static uint64_t prev = 1;
prev = (prev * A) & (M - 1);
return prev;

}

3. Comparison of efficiency

Let us consider the following implementations of different PRNGs with linear
congruential algorithm:

prng40 original implementation based on the double precision floating
point number to represent a large integer number can be found
in [6, 7].

drand48 GNU C library [8] implementation, C and UNIX standard gener-
ator.



Acceleration of linear congruential generators 53

Comparison of efficiency of implementations of the PRNG based on the LCG

PRNG
LCG parameters

(A, B, M)

Time for generation
109 numbers, s

original accelerated

prng40 (517, 0, 240) 146.5 6.5
drand48 (7 · 433 · 739 · 11003, 11, 248) 171.5 8.9

In the table, the results of testing the above two PRNGs in their original
form and accelerated by means of techniques proposed are given. Compu-
tations are performed on Pentium4 2.4 GHz, Linux OS, and compiled with
GNU C compiler with -O3 optimization flag.

4. Conclusion

The techniques to increase the efficiency of the LCG based on 64-bit inte-
gers and bitwise operations are studied and tested. Comparison of efficiency
of various implementations of built-in drand48 and 40-bit prng40 PRNGs
based on the LCG are performed. Experimental results show that the ac-
celeration of the LCG is about 20 times.

References

[1] Ermakov S.M., Mikhailov G.A. Stochastic Simulation.–– Moscow: Nauka, 1982.

[2] Marchenko M. Parallel pseudorandom number generator for large-scale Monte
Carlo simulations // Proc. PaCT-2007.–– Springer, 2007. –– (LNCS; 4671).

[3] Dyadkin I.G., Hamilton K.G. A study of 128-bit multipliers for congruen-
tial pseudorandom number generators // Comput. Phys. Comm. –– 2000. ––
Vol. 125. –– P. 239–258.

[4] Acceleration of some linear congruential generators.–– http://ssdonline.sscc.ru/
kalgin/prng.html

[5] C99, ISO/IEC 9899/1999.

[6] Prigarin S.M.–– http://osmf.sscc.ru/∼smp

[7] Prigarin S.M. Spectral Models of Random Fields in Monte Carlo Methods. ––
Utrecht: VSP, 2001.

[8] The GNU C Library. –– http://www.gnu.org/software/libtool/manual/libc.



54


