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Numerical simulation of
the 3D thermoelasticity problem*

A.A. Kalinkin, Yu.M. Laevsky

The paper deals with a numerical model based on the finite element discretiza-
tion of the 3D thermoelasticity problem in compound parallelepipedal domain. The
piece-wise trilinear functions are used. Iterative process is based on the Neumann-
Dirichlet domain decomposition procedure, and numerical experiments demonstrate
that the convergence rate does not depend on the grid parameters.

1. Statement of the problem and some notations

1.1. Geometry. Let 2 be a 3D doinain, which is a union of the two non-
overlapping parallelepipeds

ﬂ(l} = {(21,22,33): 0<z <a, 0< 2 <b, 0<33<C}'
Q® = {(z1,22,23): 0<z1<a, d<z3<b, c<z3<f}

Let us introduce the following notation for different parts of the boundaries
of subdomains:

Y = {21=0, 0< 2 <b, 0< 25 <},
F%c): ={z;=a, 0<z2<b, 0<2z3<¢},
I‘% ={0<z<a, z2=0, 0<z3<¢},
FQQ ={0<z <aq, z2=b, 0<z3<¢},
P:(sfc)» ={0<z <a, 0<z3 <b, 23 =0},
r:(afl ={0<z1<a, 0<2z;<d, z3=c},
I = {£1=0, d<23<b, c<z3< S},
I = {z1=a, d<22<b, c<2z3< S},
1‘§f§,= {0<z1<a, za=d, c<z3<f},
ry) = {0<z <a, z2=b, c<z3< f},

I§) ={0<21<a d<z<b, a5 =}
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And, finally, there is an interface between (1) and Q(2);
I‘={0521§a, dSzzsb, 23=c}.

1.2. Elasticity equations. The components of the stress tensor o are
defined for i, = 1,2,3 as follows

3
Oij =04 = 2;‘ E‘-j + A(z Ekk) J,'j - (2}1 + 3A)QT(T - Tl)aij, (1)
k=1

where T = T(z,, z2,z3) is the given temperature field, T} is the parameter,

1/6u; Ou; .y
E§j=§(a—zj+oz:)p Jii=1) Jl'j=0'7£.7:

u), ugz, ug are the components of the displacement vector u. The Lamé
coefficients A and u are connected with the Young module E and the Poison
ratio v according to the formulas

_ Ev - FE

TU+na-22 HTn+w)

Then the equilibrium equation as the system for displacement u in the
subdomains Q(), Q) is the following:

A

divo(u) =0, (2)
here -
e do1y + 0013 + 8013
oz, 8zq Oz3
30'12 + 30‘22 80‘23
331 32:2 323
0013 0oz  Ooss
(921 + (93:2 + 823
The boundary and the interface conditions are the following:

e The Dirichlet conditions

dive =

1 =z 1 =z
u; = u‘,’(§ - ?l), up =ug(§ - Tz)’ u3=0 on Pg(),; (3)
e The Neumann conditions
onn=012=013=0 ‘ on I‘ﬁ’, U I‘Et)‘ U Pﬁ)] U I‘ﬁl,

‘o123 =032=023=0 on I‘gg U I‘gg U I‘gﬁ U I‘g, (4)

o3 =033 =033=0 on Pgl (U] I‘gf};

e The conditions on the interface

[u1] = [uz] = [us] = [o13] = [023] = [033] =0 on . (5)
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1.3. Variational form of elasticity problem. According to conditions
(3)-(5) for any tensor 7 we have the following formula of integration by
parts:

« f e(u) : Tdzy deydxs = -—f u - div 7 dz; dz; dz3,
0 Q

where

3
EIT= Z €ijTij-
i,j=1

Then from (1), (2) it follows
2 '[nps(u) : €(v) dzy dzp dz3 + /(;A(V -u) (V- v)dz, dzy dzs
= /;] (2 + 3\)ar(T — T,)(V - v) dz; dz; das. (6)
Here for the vector u we use the Dirichlet conditions (3) and v = 0 on I‘g?,.
A more accurate formulation requires indication to the vector Sobolev spaces

for these vectors. Let us note that the Lamé coefficients are discontinuous
functions.

2. Finite element discretization of elasticity

equations

i 7 8
2.1. Basis functions. We will use the finite ele-
ment space of the rectangular partitioning of trilin- 5, 8
ear functions (Q1(eo))? [1] for each component of the v
displacement vector. Here ey = [0, 1]? is the reference 3 4
cube. The basis of the space (Q;(eo))® consists of 24
vector-functions 1 L) VAS

Figure 1

#i(£) 0 0
$i(€) = ( 0 ) y Pia(é) = ( #i(£) ) y  is(€) = ( 0 ) ,
0 0 ¢i(€)

where ¢ = (£1,£2,£3) are reference variables, 1 = 1,...,8 are local numbers
of the vertices of the cube eg (Figure 1). Then

$1(§) =(1-&)(1 - &)1 -&),  ¢s5(8) = (1 —&)(1 — &)6s,
#2(€) = &1(1 - £2)(1 - &3), P6(€) = &1(1 — &2)&s,
#3(€) = (1 - £1)&2(1 - &), $7(§) = (1 — &1)é26s,
#4(§) = &1€2(1 — &), #8(€) = €1&28s.
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2.2. A local stiffness matrix. According to (6), the entries of 24 x 24
local stiffness matrix have the form
Ky im) = V°© (2 ./;o Beg(Pix) : ee(bin) d€ + j;o AM(Ve - ¢i)(Ve - din) dE),
i,j=1,...8, kn=123.

Here V¢ = I;13l3 is a volume of the parallelepiped e, and I}, are the lengths of '
its edges. The differential operators €; and V; correspond to the operators
¢ and V for the mapping e — eg. Then, using the notation

O¢; 0
Ko iy = | == =22d¢
(6k).Gn) = J, €k BEn

we have
e e 1 e e KO e 2 1 0
Ky gmy =V m—(# + A% Ky (jmy) + 1 D 77 Kiim),(jm) )k |-
n m=1‘"m

The numbers K, (0“),( jn) T€ independent of the elements e. The local matrix
K* can be presented in the block form

Ki, Ki; Kis

K®=| K3 K3 K3 |,
K5 K3 Kjs

where . -
€
Kim),an) Eamyn) = K{im),(on)

Kiamy,an) Kiamy@n) ° Kiam),(sn)

Krgrm =

K(gm),an) Klamyan) *° Kam),(am)

2.3. A local force vector. According to (6), the components of the local
vector of the right-hand side have the form

Fiyy =Ve /: (204 30)ar(T — T1)(Ve - dux) dt,

where, in the element e,

8
T =) T;¢;(€)-
i=1
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Then

1. .

F(i.k)=Ve(2”e+3)\e)i;Ea;(T;—Tl)F}f(ik), i,j=1,...,8, k,=1,23,
j=1

where

0¢;
F}g(ik) = Lo ¢J a&k df

is independent of e.

3. Iterative method

After the finite element discretization, the grid elasticity problem for the
known grid functions 7' and N can be written down as the following algebraic
linear system

Au = f, (7)
where the block presentation

A Az Ay il 2
A=| AL, Axn A |, ﬂ=(":), f=(f§)-
AT, AT, As % f
corresponds to the vector displacement u.
We will use the preconditioned conjugate gradient (CG) method [2] to
solve system (7). As preconditioner, the Neumann-Dirichlet decomposition
[3] with the reflection operator for the extension of grid functions will be

applied [4]. The solvers in subdomains will be realized with the use of the
Fourier transform [2].

8.1. The generalized conjugate gradient method. Let us introduce
3 x 3 block symmetric positive definite matrix B (preconditioner). Then the
generalized CG method can be written down as follows. Let ug be given.
Then

gk = B7lry at k=1, gk = B lry + orgr-1 at k> 1,
where rr_; = Aug_1 — f. Then

Up = U1 — Prgr, k21,
_ re-1ll%-1

2

ra—1li%-
= B~ at k>2, ﬂk=MB—-iatk>l,
"rk—2"3—1

llgxlt% -

where
||7'm||23—1 = (B_lrm’rm)’ ||9k||34 = (Agk’gk)'



34 A.A. Kalinkin, Yu.M. Laevsky

The purpose of preconditioning consists in designing a matrix B which,
in a sense, is close to the original matrix A (the matrix AB~! is close to the
unit matrix), and the operation B~!r is efficiently realized (either by the
direct method or by some inner iterative process using a special structure of
B, whose convergence is sufficiently high in contrast to the matrix 4). We
will use the block-diagonal

[}

A0 O
Bz(OAO), (8)
0 0 A

where (—A) is some “approximation” to the grid 7-point Laplacian A in
0 with the Dirichlet conditions on l"_(,,f(), and the Neumann conditions on
the other parts of the boundary. The matrix A is positive definite. We
cannot efficiently inverse the operator A; because {2 is not a parallelepiped.
However, as ) is a union of two parallelepipeds, we can use the domain
decomposition technique in the form of the additive Swartz method with
the Dirichlet-Neumann alternating conditions at the interface I.

3.2. Domain decomposition preconditioning. Let us represent the op-
erator Ay in the following block form:

An A
e (B 20,

A12 Az
where blocks of the matrix Ap correspond to the partitioning of a vector
into two groups: the first group, consisting of variables in the grid vertices
of the first subdomain {8(1), except for I'§ and including the interface T
between subdomains and variables in the grid vertices from Q(2), except for
the interface I', form the second group. Let us consider the matrix A;y,
which corresponds to the Neumann problem at the interface I' in the first

subdomain. Note that Aj; corresponds to the Dirichlet problem at the
interface I' in the second subdomain. Let

0 0 I
-1_ _paA-1pT _ _ 11
A~'=—RAJLR (0 !_.1), R,—(Rn),

where I;; is the identity operator in the first subdomain and Rj; is the
operator of the extension of grid functions from Q) to (), which can be
readily designed as reflection with respect to the interface I'. Note that the
matrices A;x and Az are invertible because the Dirichlet conditions are
valid at I"gf[), and I, respectively. And, finally, note that we have designed
the matrix A~! but not the matrix A. Let us recall that we need an efficient
procedure to calculate B~!r (according to (8), A~1r%).
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Now we will describe the realization of this preconditioner. Let hy, ha,
hs be constant steps size of the spatial grid, such that

b
N =2 N = = NP =

b—d N =& Na(z)szc
hy

hz ! ha h3

are integer numbers, and let Nél) > Nz(?) and Nél) < Ns(z). Then let r;
and r; be the partitioning of the vector r* into two groups described above.
Calculation of the vector w = A~1r! = (w;,w3) can be represented as the

. following sequence of steps:

1. Calculation of RTr! = r; + Rglrz:

vl(il,iz,i::,) = 1‘1(1'.1,2'2,1:3) + f‘z(il,ig - Nén + N2(2)’N§l) +1- ia),
1=0,...,Ny, iz=NP-_N® ... NOY 45=1,. NV

2. Solution of the problem in Q(): —A;yw; = v;.
3. Extension from () to Q) (reflection):

va(i1,42,83) = wy (i, 42 + NSV — Néz),Nél) +1—13),

i1=0,...,Ny, ip=0,...,N?, i3=1,...,N{.

4. Solution of the problem in (), —Axys =ra.
5. Calculation of wg = v3 + ys:

wa(i1,42,13) = va(i1, 42, 43) + ya(é1,92,13),

i1=0,...,Ny, i2=0,...,N?, i3=1,...,N?.

In the subsection to follow, the exact inversion of the matrices Ay and
Aq2 will be described.

3.3. Solution in subdomains. Let us consider the solution to the linear
algebraic system
Cu=yg, (9)

which is an ordinary 7-point approximation on rectangular grid of the Pois-
son equation in the parallelepiped (a1, b1) X (a2, b2) X (a3, bs) with the Dirich-
let conditions on a part of the boundary {(z1,z2) € (a1,b1) % (az,b2), z3 =
a3}, and with the Neumann conditions on its other parts.

Let us note that both matrices —A;x and —Aj; have the form of the
matrix C. In the first case
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01=0, b1=a, az=0, bz=b, a3=0, 63=c,
and in the second case

a; =0, bl=ay a3 =d, b2=bt as = ¢, b3=f

Let
h=b-a, lz=by—a3 Il3=bj—a3
and
: _h _ & _ 13

This means that either Ny = Nél), N3 = Nél) or Nz = N-‘?), N3 = Néz).
We will use the discrete Fourier transform for variables z; and z3 and LU
factorization for the variable z;. The matrix C' can be written down as
follows:

hah hih hih

203 ——M ®C:® M3 + —2M, @ M; ® Cs,
h h; hs

where C; and M; are (N1 + 1) x (N + 1) matrices, C; and M, are
(N2 + 1) x (N2 + 1) matrices, C3 and M3 are N3 x N3 matrices:

C =

Ci®M,® My +

( 1 -1 \ (3 \
-1 2 0 1 0
C = y M= )
0 2 -1 0 1
-1 1) \ 3 )
1 -1 1
(—1 2 0 \ (i 1 0 \
Cy = y M= ,
0 2 -1 0 1
\ -1 1) \ i)
(2 -1 \ (1 \
-1 2 0 1 0
Cs = , M=
0 2 -1 0 1
\ -1 1) \ i)

Let us consider two generalized eigenvalue problems:
Cir = MMy,  Csps = AsMsyjs.

Their solutions are the following:
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Apg = 4sin? ;T”l k=0,...,Ny,

. f 1 . f 1 . .
1/)1,0(1)3 Fl’ ‘l‘bl,NI(t): Flcosm, t=0,...,N1,

. ’2 kin .
1[)1';‘(1): TVT-COSF]_, k=1,...,N1--—1, ‘l=0,...,N1,

. f2 2k — 1)iw .
1/)3,,,(1.) = FSCOS'('—-vas)—, k= 1,...,N3, I=1,...,N3.

The calculation of the solution to system (9) consists of the following three
steps:

1. The direct Fourier transform:

Ny :
9, (32,43) = Y glin,i2,43) 1, (51),

11=0

N3
Ik ks (82) = D g, (i2,93) P30, (33)-

iz=1

2. LU factorization for the Fourier coeflicients:

2
ah'k’(l) T 24 (h:/hq)zll'h + (hz/hs)’x\s,ks ’
h
ﬁk] ks (1) = r;sgh ks (O)Qh k3 (1);

1
2 + (ha/h1)? A1k, + (ha/hs)?As ks — iy ks (2)’

. h ) . .
Bryks(i2+1) = (r;sgkhka (12) + ﬁknks(‘ﬂ) Qjey kg (12 + 1),

i2=1,...,N; - 1;

29k, ks (N2)hz/(R1hs) + 2B, ks (N2)
2+ (hz2/h1)2Ask, + (h2/hs)?As ks — 20k, ks (N3)’
Uk ks (12 — 1) = iy ks (82)tky 05 (12) + Biy ks (82), 2 =Nz,..., 1

Qky ks (iz + 1) =

Uk, ks (Nﬁ) =

3. The inverse Fourier transform:

N3
ug, (i2,43) = Y Uy ko (i2)¥3,55 (33),
k3=1

Ny
u(in,ia,is) = Y ug, (iz,43)1k, (81).
k1=0
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- The values u(iy,12,73) form the vector, which is the solution to prob-
lem (9).

4. Numerical results

As mentioned above,  consists of the two parallelepipeds: the lower one
; and the upper one ;. The lower one Q; = [0,11.0] x [0,2.6] x [0,0.3]
consists of staff with the following coefficients: Young’s module E = 5.0 -
104, Poisson’s ratio » = 0.3 and the thermal expansion coefficient ar =
10~%. The upper one ©; = [1.0,11.0] x [0,2.6] x [0.3,0.6] has the following
coefficients: Young’s module E = 6.89 - 10%, Poisson’s ratio » = 0.3 and
the thermal expansion coefficient ar = 5-107°. The boundary conditions
are the same as in Section 1.2, i.e., the same Dirichlet condition given on
the lower plane, the free surface condition is given on the rest plane. The
temperature T was constant and T' — Ty = 180. The experiment has been
realized on three inserted grids. The character quantity and the resulting
data are presented in the table, where h is
h N n| 7s a step size of the grid, N is the number of

0.1 51526 |52 | 88 de.grees of .free.dom, n is the numl?er of ite.ar-
0.05 | 402588 | 51| 76.1 ations, which is necessary to provide the in-
0.025 | 3182588 | 52 | 706.2 | equality fir™(|/|Ir®|| < 107° for the residual r"
and, finally, 7 is the time of task execution.

As we can see, the number of iterations practically does not depend on
the conditioning number of the algebraic linear system. As most execution
time of our task is spent on calculation process exactly, the ratio /n gives
us an approximate duration of one iteration. Evidently, it is proportional
to the problem dimension.

The scalar field-function H = (011 + 022 + 033)/3 is shown to confirm
the convergence of solutions to one, as we can see in Figure 2.

0 1 2 3 4 5 6 7 8 9 10 1
Figure 2. The scalar field section for z; = 1.3 for h = 0.1, 0.05, and 0.025
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