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Numerical solution to the inverse
problem for a system of elasticity
for vertically inhomogeneous medium*

A.L. Karchevsky

In the paper, the results of numerical solution to the inverse problem for a sys-
tem of elasticity for vertically inhomogeneous medium are presented. The center of
compression excites the elastic oscillations in medium. This mathematical model of
source does not give a decomposition of the elastic system and we need to solve nu-
merically the inverse problem for all system. It is necessary to find the longitudinal
velocity v, and the transverse velocity v, in each layer if longitudinal and transverse
displacements are known on the surface. The results of reconstructions of velocities
for medium typical for Western Siberia are presented. It is shown that satisfactory
reconstruction is possible if the inverse problem data with error in 5-40%.

1. Introduction

At present, there are a lot of works devoted to one-dimensional and multidi-
mensional inverse problems for system of elasticity. We must note the basic
works of A.S. Alekseev [1], A.S. Blagovestchenskii [2], V.G. Romanov [3],
and V.G. Yakhno [4]. For one-dimensional inverse problem for the Lame
system of elasticity there are a lot of investigations (see, for example, refer-
ences in the works noted above). A characteristic feature of all those works
is the use of combined sources such as combinations of vertical impact with
instantaneous center of rotation [1], or sloping impacts [2, 3, 4]. Such a
choice of sources gives a possibility to decompose systems of elasticity and
hence original inverse problem can be reduced to a sequence of more simple
inverse problems for scalar hyperbolic equations.

Applied geophysics takes an interest numerically to solve the one-dimen-
sional inverse problem of elasticity with a source which can be described
as

TVoy,:0(2,y,2 — 2)f(t),  f(t) = pAe™ cos(wot + ). (1)

This source is interpreted as a center of compression which is a model of
explosion. Here p is the density of medium in which the explosion takes
place, A, b, wo, 9 are the values characterizing the explosion, z, is the
coordinate (depth) of the explosion (z, # 0). This mathematical model of
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source does not give a decomposition of the elastic system, and we need to
investigate and to solve numerically the inverse problem for all system.

2. Statement of inverse problem

Let us have the medium as n-layered structure with points of the boundaries
21, k = 0,7, zo = 0; the layer with the number of m is found in zm_1 <z <
Zm, the last (underlying) layer with the number n +1in 2z, < z < o0. We
assume that the density p is the known constant. Each layer is characterized
by the longitudinal velocity v, and the transverse velocity vs, i.e., vp(z) and
v,(z) are step functions of the variable z, 0 < z < co. Source (1) excites
the elastic oscillations in medium. The source is found in one of layers,
ie, z. # zx, k = 1,n. Applying to the system of elasticity in cylindrical
system of coordinates the Fourier-Bessel transform with respect to r and
the Laplace transform with respect to ¢ we obtain the following system:

8 (. 8 o0
i Y —uNT U - =
2 (M 8ZU+VNU) YNT LU - KU =F, )
U u P vAd(z — z.) Mo v2 0
e’ T AV (z—z) )] - "uf, !
0 a2 2 4 22 0
N = 2 2 v’ ’ K = P g vp 2 .
vi-2] 0 0 p? + v}

Here v is a parameter of the Fourier—Bessel transform, p = —a+iw is a
parameter of the Laplace transform, the superscript T' denotes that matrix
is transposed. The boundary conditions are as follows:

=0, U—=0 (z— o). (3)

(MEU + VNU)
az z=0

The conditions on the gaps are as follows:

[M%U+ VNU] =0, [U), =0, k=Tn (4)

Zk

Here we use the notation [f]; = f(z +0) — f(z — 0) for a value of gap of a
function f in the point z. :

We assume that the longitudinal velocity and the transverse velocity are
known in the first and the last layers. We assume also that coordinates of
the gaps zx, k = 0,n, are known too.
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Inverse problem. Find the longitudinal velocity v, and the transverse ve-
locity vs in each layer if we know the following additional information on
solution of the direct problem (2)-(4)

U(07V)p) = UO(Vap)) Up = [::(;J . (5)

where the Uy (v, p) is the given vector-function.

3. Numerical solution to inverse problem

To solve the direct problem (2)-(4) we use the ideas from works [6-10]. In
(9, 10], A.G. Fat’yanov developed the basic principles for solution of elastic
system.

To numerically solve the inverse problems of seismic a minimization of a
cost functional is widely used in practice. We can note works [11-22], and it
is by no means full list. Excepting [12], in most cases the inverse problems
were considered for one equation.

To solve inverse problem (2)-(5) we minimize the cost functional

Toarv5] = 353 b (|u(0,,2)~uo (4, ) + w(0,,p)~wo(,p)2). (6)

v

Here the summation is conducted with respect to v and w which belong
to certain discrete sets, the values h, and h, are normalization constants
depending on the number of the frequencies v, w and its frequencies intervals.

It is necessary to note that inverse problem (2)—(5) is nonlinear. This
course affects on the behavior of functional (6). The values of a and v,
frequencies intervals, numbers of time and space frequencies N, and N,
the discreteness of sets of frequencies, the combination of these parameters
affect on the behavior of the cost functional too.

We made series of calculations for the medium typical for Western Siberia.

Velocities (km/s) and gaps coordinates (m)

Velocity Velocity Velocity
n Zp n 1z n 2z
vp Vs vp UM vp Vg

2.3 1.5 1500 8 | 42 | 23 1555 15 | 3.3 | 2.0 1607
3.2 1.6 1507 9 | 43 | 24 1562 16 | 3.6 1.9 1615
3.4 1.7 1514 10 | 4.1 2.5 1570 17 | 3.5 1.8 1622
3.3 1.8 1525 11 | 4.0 | 2.4 | 1577 18 | 34 | 2.0 1630
3.1 1.6 1533 12 | 39 | 23 1586 19 | 35 | 21 1640
3.2 1.7 | 1540 13 | 40 | 2.3 1593 20 | 29 | 21 1658
3.1 1.8 1548 14 | 41 | 2.2 1600 21 | 4.0 2.5

N OO R W N
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Parameters of source: z, = 20 m, A = 10° is a normalization constant,
b =100, wy = 27 - 30 Hz, ¢ = 0.
We made several steps to minimize the cost functional (6):

e at the beginning we put v = 0;

— to reconstruct the longitudinal velocity we choose initial approach
vp = const in all layers;

— we choose the interval of time frequencies 10-25 Hz;

— we minimize the functional, if the value of functional or the norm
of functional gradient is less than ey, then the minimization pro-
cess is stopped;

— we choose the interval of time frequencies 10-85 Hz;

— using the obtained approach as initial one we minimize the func-
tional again, if the value of functional or the norm of functional
gradient is less than €3, then the minimization process is stopped;

e second, we put v = 1072,

— we choose the interval of time frequencies 5-65 Hz;

— to reconstruct the transverse velocity we choose initial approach
vs = c19p + 2 (c1 and cy are correlative constant typical for this
region), here we use the longitudinal velocity reconstructed,

— we minimize the functional, if the value of functional or the norm
of functional gradient is less than ¢3, then the minimization pro-
cess is stopped.

To solve the inverse problem the additional information (5) was com-
puted with the help of the solution to direct problem, and after that the
random error was introduced in this data. In Figures 1-5, we show the
results of reconstruction of the longitudinal velocity v, and the transverse
velocity v, introducing errors in 5, 10, 20, 30, and 40% respectively. Solid
line denotes the exact solution, and dashed line denotes the reconstructed
one.
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Figure 1 Figure 2
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Figure 3 Figure 4

Figure 5
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