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On completeness of mechanism of
annotation-directives*

V.N. Kasyanov

An annotated program is a program written down in a programming language
extended by the annotations which are formalized comments in the basic programs’
and relevant for the semantics of the program can be described. The paper focuses
on the completeness property of the directive mechanism for different kinds of
basic program manipulations. It is shown that any basic program transformation
represented by a normal Markov algorithm may be modelled within annotated
program framework so that annotations specify only elementary transformations
of annotated programs and for any basic program the transformation process not
only has the same result as the normal algorithm modelled, but also performs the
similar sequence of processing steps.

1. Introduction

An annotated program is a program written down in a programming lan-
guage extended by the annotations which are formalized comments in the
basic programs and relevant for the semantics of the program to be an-
notated [1]. The extensions of high-level languages by special annotations
(pragmas) are in common use in compilers and are currently considered
as a part of language description [2-4]. One of three main approaches to
transformational program development is a so-called extended compilation
[5] characterized by permitting advice and partially relaxing the limits on
the basic language. That is, the transformation system accepts not only
the basic program, but also some annotations being guidance on how to
do. the transformation. But annotations are not just pragmas or hints for
compiler or another transformation system (e.g., for automatic paralleliza-
tion of a sequential program). They can be used to modify the semantics
of the basic program, but only in a very moderate manner [1-7]. In [1,
6-8] an attempt was made to suggest methods and tools for annotated pro-
gramming, whereby a given general-purpose program can be annotated by
known information about a specific context of its applications and correctly
transformed into a specialized program which is equivalent to the original
one on the context-defined ranges of inputs and outputs and is better than
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that by quality criteria given by the context. According to the approach pre-
sented, the following properties hold. Annotations added to a basic program
specify a covering context. It means that any actual program application
from the context described must be admissible by annotations, but some
admissible applications may be beyond the context. Annotated programs
are subjected to concretizing transformations as a whole. It means that the
transformations can change not only the basic program but their annotations
as well. Annotations may specify the context of basic program application
both explicitly — as assertions which are préedicate constraints on admissible
properties of program fragments or admissible states of computations, and
implicitly — as directives which specify admissible transformations of anno-
tated programs or states of computations in indicated points of a program.

It was shown [6-8] that the class of correct transformations of annotated
programs covers various kinds of basic program manipulations. It contains
all equivalent transformations as well as a number of such nonequivalent
transformations which specialize or generate a basic program to be trans-
formed, in particular, partial evaluation (mixed computation) of basic pro-
grams on partially given inputs [9]. So, the approach permits specializing
and generalizing transformations of basic programs to be reduced to equiv-
alent transformations of annotated programs and equivalent transformation
techniques developed earlier to be employed for their investigation. An-
-other advantage of the approach outlined above is the possibility to perform
global transformations of basic programs by iterative application of elemen-
tary (context-free) transformations of annotated programs.

It was shown in [7] that within annotated language framework, where an-
notations are names of elementary transformations of annotated programs,
the transformational semantics of Algol-like programming language can be
described. This paper investigates a problem of completeness of the directive
mechanism for different kinds of basic program manipulations. It is proved
that any basic program transformation represented by a normal Markov
algorithm [10, 11] may be modelled within annotated program framework
in such a way that annotations specify only elementary transformations of
annotated programs and for any basic program the transformation process
not only has the same result as the normal algorithm modelled, but also
performs the similar sequence of processing steps.

The paper consists of three parts. The first one presents the notion
of normal Markov’s algorithm; the second one describes the subclass of
annotated programs and gives some notions connected with the problems of
realizing normal Markov’s algorithms by annotated programs; the third one
presents an algorithm of realizing normal algorithms by annotated programs
of investigated type.
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2. Normal Markov’s algorithms

Fix an alphabet I, and let symbols — and e be not in X. After Markov,
formulas of the type
a— 3 and a — ef,

are called simple and final substitution formulas respectively, here a, 8 € T*,
i.e., a, B are some words in ¥ (may be empty); a is called the left word of
the formula, g is called the right word of the formula.

An arbitrary finite sequence of substitution formulas is called a scheme.

The following rule for the processing of words in ¥ is called normal
algorithm with a given scheme 7 in the alphabet .

Given an arbitrary word v € £*. It is assumed that a word 7o = «
is derived from a word 7 after zero steps of the processing.” For some n,
n > 0, let a word 7y, be already known as derived from v after n steps of
the processing. Then (n+1)-th step of the processing is the following. Find
the first substitution formula in the scheme 7 such that its left part o is a
subword of the word +,; then substitute the right word g of the formula for
the first appearance of « in 7, (in particular, if & is an empty word A, then,
by definition, it is assumed that the result of this substitution is a word
B7n). The resulting. word is denoted by Yp41. If Yn41 is derived using the
simple substitution formula, then 4,4, is said to be a word derived from v
after n + 1 steps of the processing. If the used substitution formula is final,
then the word 741 is called the result of the processing of the word v by
an algorithm 7 and is denoted by = (y).

If the scheme 7 does not contain a substitution formula such that 1ts left
word is a subword of 4y, then v,41 = v, and a word Yn+1 i8 called the result
of the processing of the word 7 by the algorithm' , i.e., 7(7) = Ya41. _ .

In both latter cases the processing of the word 7 is said to be terminated
after (n.+ 1)-th step. If there are no steps when the processing terminates,
then the result of the processing of the word v by the algorithm » is unde— _
termined. In this case an undetermined value is assigned to x(‘y)

3. Annotated programs

Let there be an alphabet D, not mtersectmg with X, which elements are
called directives. Let symbols {, }, = be not in TU D.

Denote by A(D) the set of all words of the form {d;,...,di}, where
k > 0 and dy,...,d; are directives, distinct in pairs, from D. The elements
of A(D) are ca.lled annotations.

A pair (d, p) is called contezt-free transformation of annotated programs,
where d € D is the name of the transformation, p is an arbitrary recursive
set of pairs (¢, ) of words in the alphabet £ U A(D). In the pair (i, ¥)

.
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- the word ¢, is called a replaceable fragment, and ¢ is called a replacing
fragment. The set p may be specified by some “simple” rule, which allows
us to know whether an a.rbltra.ry pair of words has the property p. In this
paper we consider as p only finite sets of pairs of words; to specify p we use
formulas of the type {¢; = ¥1,...,9m = ¥m}, where m = |p| and the pair
(v, ¥4) belong to p for any 1. '

An arbitrary word « in: the alphabet £ U A(D) is called an annotated
program.

For any o € (£U A(D))* we denote by BASE(a) the so-called base of .
the annotated program, which is a word in the alphabet X, derived from a
by eliminating all elements from A(D), i.e.,

@ ifaeX
BASE(a) = BASE(B), ifa=c¢f andce€ A(D),
aBASE(B), ifa=c¢f andceX.

The processing of the annotated program « is formulated in the follow-
ing way. A fragment (3 of the program o is called active, if it is of the form
yw, where 4 € A, and v contains a directive d, for which g is a replaceable
fragment (note that with respect to [5] we narrow down the notion of an
‘active fragment and thereby narrow down a class of processings 'of anno-
tated programs). The transformation of an active fragment 3 consists of
the replacement of it in o with the corresponding replacing fragment from
the directive d. The processing of o is performed in steps, each being a
transformation of a nonempty set of active fragments. The process termi-
nates, if the program does not contain active fragments on some step. It is
easy to see that for the same program the definition stated above admits a
number of ways of processing varying in a set of active fragments, choosing
for the transformation at some step.

Let ap = @,...,0y... be the processing of the annotated program a.
Then a frame of the processing is a sequence of words derived from the
sequence fo,B1,...,0n,..., where §; = BASE(e;) by eliminating all §;,
7 > 1, such that ﬁ_, Bi-1.

A program a is called deterministic if it determines a processing such that
there are no two different active fragments on each step of the processing.

It is said that the deterministic annotated program o realizes the pro-
cessing of the word by normal algorithm , if there exists an integer k > 0,
such that there is no more than k sequential steps retaining the base pro-
gram in the processing of @, and the frame of the processing of a coincides
with the sequence of words obtained in the processing of v by the algorithm
.

A normal algorithm with the scheme 7 in the alphabet ¥ is realizable
by the annotated program, if there exist an alphabet D of directives and
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the function f : ¥* = (2 U A(D))*, such that for every v € £*, f(v) is the
deterministic annotated program realizing the processing of 4 by the normal
algorithm with the scheme =. '

4. Realizability of the class of normal algorithms

Let a scheme 7 = (my,...,m,) be specified in the alphabet X. For every i,
1 € i < n, we denote by ¢; and ; respectively the left and the right words
of the substitution formula m; of the scheme .

We consider as D a set of 2n 4+ 6 symbols which are not in X. Let
D ={v,A,0,0,0,90,q1,-+,Gn,P1,- - -, Pn}- For every a € * denote as @
a word in the alphabet X U A(D), derived from a by the following rules:

_ A, fa=A,
*= c{o}8, ifa=cB and c€X.

The set of transformations associated with the directives from D, is deter-
mined by the rules:

1. A new step transformation is associated with the directive |7 and
consists of the replacements:

(a) {V,g} = {v,0}

(b) {V1 Qi} = {V!pﬂ-l} for every i= 01 L...,n=1

(©) {VHA ¢} = {v,aH{A} for every i = 0,...,n;

(d) {v}e{A, ¢} = {V,¢}a{A)} for every i = 0,...,n and for each
a € X

(e) {v}a{o, ¢} = {v,¢}a{oc} for every i = 0,...,n and for each
a€L;

() {v}a{o,©} = {v,0}a{o} for every a € L.

2. A transfer transformation is associated with the directive o and con-
sists of the replacements for every o € ¥ and for every : = 0,1,...,n:

(a‘) {o}a{o, qt'} = {oi qi}a{o};
(b) {o}e{A, i} = {o,qi}a{A};
(c) {o}a{o, O} = {0, O}a{o}.

3. A termination transformation is associated with the directive O and
consists of the replacements for every a € I:

(a) {v,O0HA}=;
(b) {v,0}a{o} = ofo,0};
(c) {o,O}afo} = afo,0};
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(d) {o,0O}a{A}= a.

4. No replaceinents are associated with the directives A, and ¢, for
1<i<m ‘

5. A substitution transformation is associated with the directive p;; for
every ¢,1 < i <m, it is determined by the following rules:

(a) if ¢i # A, then for every & from £, differing from the first symbol
of ¢;, the replacements are the following:
{o,pi}a{o} = {o}a{o, pi};
{O:pi}a{A} = {O}Q{Aa qi'}-
{V,pi}a{o} = {V}e{o, pi};
Avip}a{A} = {vIe{A, ¢}
 AvisHAY = {VHA, a}
(b) if m; is a simple substitution formula, ¢; # A and ¥; # A, then
the replacements are the following:
{V, Y0 = {V, 0} ¥;;
{oip"}¢£ = {01 QO}¢£;
(c) if m; is a simple substitution formula, ¢; # A and ¢; = A, then
the replacements are the following:
{V,Pi}@{o} = {V?QU};
{V,p}o{L} = {V,00HAY;
(d) if m; is a simple substitution formula, w; = A and 9; # A, then
the replacements are the following for every a € I:
{V,P{}a =>{Vs QO}Ei{_O}a;
{v,piHAY = {v, 0} {A);
(e) if m; is a simple substitution formula, p; = A and %; = A, then
the replacements are the following:
{v.pi} = {v, 0}
(f) if m; is a final substitution formula, ; # A and ; # A, then the
replacements are the following:
{Vspi}fﬁi = {v: D_}_wi;
{o,0}%: = {0, 0¥
(g) if m; is a final substitution formula, ¢; # A and t; = A, then the
replacements are the following:
{V,P-‘}@{O} = {V1 D};
{V.pi}p{A} = ,
(h) if m; is a final substitution formula, ; = A and # A, then the
replacements are the following for every o €
{Vipita = {v, 0} {o}e;
{v,pHA} = ¥;;
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(i) if m; is a final substitution formula, ; = A and t; = A, then the
replacements are the following: '

{V1pi} = '{V! D}'

We denote as ; ; = 1; ; the j-th replacement of the i-th transformation for
some fixed numerations of transformations, associated w1th the dlrectwes
from D, and the replacements within a transformation.

Function f:X* — (£ U A(D))* is defined as follows. For every vE D
we consider as f(7y) the word {,p}7{A}. It is clear that f(y) is an
annotated program. Now let us show that it is determininistic and rea.llzes
the processing of ¥ by an algorithm with the scheme .

An annotation is called s:mple, if it contains léss than two directives, and
complicated otherwise.

The following properties hold by deﬁnition:

Proposition 1. If Wij and’ Pk, begin with the same complicated annotation,
and either i # k, or j # 1, then there is no word w in the alphabet LUA(D),
such that ¢; ; = ppw. '

Proposition 2. If Pij and @k, end with the same complicated annotation
and either i # k, or j # 1, then there is no word w in the alphabet LUA(D),
such that ¢; ; = wpy .

Proposition 3. If ¢ # k or j #1, then there is no complicated annotation
A and two words w, and we in the alphabet T U A(D), such that ¢; ; = w, A
and g1 = Awy.-

Theorem 1. For everyy € L the annotatéd progrﬂfn f(v) is deterministic.

Proof. Let a be a denotatlon for the annotated program f(v) for some
v € &% let ap = o,0y,...,04,..., be some processing of the annotated
program . It is clea.r tha.t every o contams no more than one complicated
annotation, this annotation is one of the following types for some i and 7
0<:i<n,0<j<n

l {V, Pj}a {V, D}1 {Va Qi}! {0, O}v {or D}1{°1 Qi_}’ {Ov pj}’ {A, Qi}-

This property obviously holds for ag by deﬁmtlon of f and it is preserved in
going from oy to @41, because the replaceable fragment of each replacement
contains a complicated annotation, and its replacing fragment contains no
more than one complicated annotation of the indicated type.

It follows herefrom and from the propositions 1-3 that the theorem is
true. a
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Lemma 1. Let ag = a,0,...,0q,... be the processing of the annotated
program a of the type {7, p;}B{A} for some i, 1 < i < n, and some B €
X*, which does not contain a subword ;. Then there ezists | such that
BA.S‘E(a,) = BASE(a) for all 0 < i <1, and either oy = 3, if i = n, or

{Vapﬂ-l}ﬁ{ﬁ}, ifi <n.

Proof. Directly from the definition we have the followmg steps in the pro-
cessing -of a.

First we transfer from ¢ ag to a, =-{v}B{A, ¢;} using the transformations
5(a), then we transfer from a; to.a; = {7, ¢}B{A} using the transforma-
tions l(c), 1(d), l(e 2(a) and 2(b); and ‘then we transfer from o; either to
{7, pi+1}B{A} using the transformation l(b), if i < m, or to {v7,0}8{A}
using the transformation 1(a), and then to B using the transformations 3(a),
3(b), 3(c), 3(d), if i =n.

Since fone of the tra.nsformatlons listed above changes the base of the
annotated program, the lemma is proved. a

Lemma 2. Let ap = @,01,...,,..., be the processing of an annotated

program of the form {7, p;}B{AY} for some i,1 < i < n, and some § € T*

with a subword ;.” Let w be a word obtained from B after the replacement of

the first appearance af a subword ;. to 4. Then there ezxistt and,0 <t < |

such that BASE(a;) = BASE(a) forall0 <i<t,BASE(0;) = BASE(w)

for allt <i<l, and etther o) = w if m; is the ﬁnal substitution formula, or
={v, p;}w{A}, tf . is the .s:mple substttutwn formaula.

Proof. Let (p, = A Dlrectly from the definition we have the following
steps in the processing of a. If 7y is mmple, then first we transfer from o to

= {V, go}@{A} using. transformations 5(d) or 5(e), and next we transfer
from a; to.a, = {7, p}o{A} using transformation 1(b). If m; is the final
substltutlpn formula, then either we transfer from a directly to a; = w
using transformation 5(h), or first we transfer to ¢ = {v,0}&{A} using
transformations 5(h), 5(g), and next we t.ra.nsfer from a; to some o = w
using transformatmn 3.

Let @; # A, 8= ;T a,nd w= 11;,1' for some T e E‘ In this case we have
the following steps of the processing of a. If ; is the simple substitution
formula, then first we transfer from o to a; = {V, go}&{A} using transfor-
mations 5(b) or 5(c), and next from a; to a, = {7, p;}@{A} using 1(b).
If x; is the final substitution formula, then either first we transfer from a
to a; = {v7,0}@{A} using transformations 5(f), 5(g), and next from oy to
some a; = w using transformation 3, or we directly transfer to a; = w using
transformation 5(g).

Let ¢; # A, 8 = 7 and w = ny;7 for some 7,7 € L*, where n #
A. In this case we have the following steps of the processing of a. If =
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is the simple substitution formula, then first we transfer from a to-some
a1 = {V}7{o, pi}pT{A} using 5(a), and next to o = {V}7{o, go}¥;7{A}
using 5(b), and next to oy = {V,p1}F{A} using 1 and 2. If x; is the
final substitution formula, then first we transfer from a to some @) =
{7}7{o, p:}B;T{A} using 5(a), then to oy = {y}7{o, O}¥;7{A} using 5(f),
next transfer to some o, = {7, 0}&{A} using 1(f) and 2(c), a,nd at last to
some o; = w using transformation 3. o a

Theorem 2. Normal algorithm with the scheme © is realizable by the an-
notated program with the set of directives D and the function f.

Proof. Consider some 4 € £*. Let ap,;,...,0%,... be some processing
of the annotated program f(v). Due to Theorem 1 it is unique. Let v =
Y1y+++y Ny - .. be a sequence of words obtained from 7 in the processing by
normal algonthm with the scheme .

To prove the theorem it is enough to show that there exists an increasing
sequence 8y = 0, 81,...,8),...such that for any k the following properties
are valid:

1) a,, = f(v),if yr is obtamed from Yk—1 using the substltutmn formula
which is not final;

2) a,, = 7, if either 4 is obtained from 43—, using final substitution,
or there is no substitution formula in x such that its left word is a
subword of x;

3) if i exists, and k > 0, then there exists t,s,_; < ¢t < s, such that
BASE(a,,_,) = BASE(q;) for all 84—y < i <t and BASE(a,,) =
BASE(aj) forall t < j < 8.

We prove this by induction with respect to k. For k = 0 the statement is
clear. Assume it to be clear for every k, 0 < k < [, and consider k =1 > 0.
The following cases are possible:

1) there is no word ¢; being a subword of vi—1, i.e., 7k = 1k-1 = 7(7);

2) % = npiw and x—; = neiw for some simple substitution formula

i =i = %
3) v = npiw and Y1 = npw for some final substitution formula x; =
ei = i

Due to Lemmas 1 and 2 and the inductive assumption, we obtain the validity
of the properties in question for k = [ in every of the three cases. o
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