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Numerical algorithms and results of experiments
to determine the parameters of the borehole

bottom and medium

M.S. Khairetdinov, O.K. Omelchenko, G.F. Sedukhina,
G.M. Voskoboynikova

Abstract. The basic steps of the method of automatic location of borehole sources
have been developed. This has been done by measuring the initial wave character-
istics used to solve the inverse problem of determining the source coordinates and
velocities of near-borehole media.

Introduction

The accuracy of determining seismic parameters of the borehole environ-
ment –– the in-seam seismic velocities and the geometry of boundaries ––
is mainly determined by the data for the borehole trajectory in the three-
dimensional space. Both of these problems are interrelated: the accuracy of
solution to the latter depends on that of the former. The determination of
the borehole trajectory, in particular, the inclinometry of inclined boreholes,
is rather difficult. It is well known that a solution becomes more complex
when the problem is solved in the real time mode. To solve it, the new
algorithms and programs for automatic measurement of the arrival times
of direct and reflected waves have been developed. This measurement uses
the data on the recording of signals from a source by the areal observation
system and by solving the inverse problem of reconstructing parameters of
the borehole source: the time in the source and its coordinates, as well as
the seismic velocity in the medium. The data are processed with the help
of a program system called “Astra” realized in the “Matlab” medium.

The efficiency of the algorithms and programs created was estimated by
processing the data obtained on the basis of a scheme of direct and inverse
VSP from ground-based and pulsed borehole sources. On the whole, the
results of numerical and model experiments have shown the accuracy in
determining the coordinates within the first meters, which indicates that
the methods created to solve the problem are rather effective.

1. The problem of estimating parameters of the borehole
bottom and velocity characteristics of the medium

Let the axes x and y in the Cartesian system of coordinates x, y, z be
directed along the Earth’s surface, and let the axis z be directed down to the
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Earth’s center. Let ν denote the average propagation velocity of the seismic
wave in the vicinity of the borehole. The sensors that record (or radiate)
seismic signals are located at the Earth’s surface or in small boreholes, at
points with the coordinates (xi, yi, zi). Let ti denote the propagation time of
a seismic signal from the source at the borehole bottom (for instance, from
the drilling bit) to the i-th point (or vice versa). It is necessary to determine
the coordinates (x∗, y∗, z∗) of the borehole bottom and the velocity ν. One
can also formulate a problem in which it is difficult to fix the radiation time of
a seismic signal, and it has to be included in the unknowns to be determined.
Then it will be necessary to determine the coordinates (x∗, y∗, z∗) of the
borehole bottom, the time in the source t∗s, and the velocity ν. Naturally,
a minimum number of sensors will increase to five. When estimating the
unknown parameters of the borehole bottom, we use a nonlinear system of
the so-called conditional equations [1–3]:

~t = ~η(X, ~θ) + ~ε, (1)

where ~t = (t1, t2, . . . , tN )T is the vector of travel times of seismic signals,
~η(X, ~θ) is N -dimensional vector of measured travel times (a theoretical travel
time curve) or a regression function, ~ε = (ε1, ε2, . . . , εN )T is the residual vec-
tor, ~θ = (x, y, z, ν, ts)T is m-dimensional vector of the parameters estimated,
X = ( ~x1, ~x2, . . . , ~xN ) is the matrix of the coordinates of sensors (or radiation
points), and N is the number of sensors (or radiation points).

Information about the distribution of errors εi = ti(~xi, ~θ) − η(~xi, ~θ) is
used to estimate the parameters. From here on, we assume that εi denotes
mutually independent random variables distributed with the zero average
and given variances: Eεi = 0, Eεiεj = σ2

i δij , σi = σ(~xi), δij is the Kronecker
delta, i = 1, 2, . . . N . In case of difficulties with the specification of variances,
they are assumed to be equal, and an unbiased estimate of the observation
variance with a unit weight in the problem solution is obtained. The latter
approach is used in this paper.

2. Methods to solve the problem

The problem of estimating the parameters ~θ is part of the so-called regression
analysis, and estimates of the least-squares method are its solution:

~θ = arg min
θ∈Ω

Q(~θ), Q(~θ) =
N∑

i=1

σ−2
i (ti − η(~xi, ~θ))2. (2)

To find a minimum of the functional Q(~θ), the Gauss–Newton iterative
method or its modifications based on a linear approximation of the regression
function in the vicinity of the point ~θk is used:



Numerical algorithms and results of experiments. . . 37

J(X, ~θk)∆~θk + ~η(X, ~θk)− ~t + ~ε = 0 (3)

where

J(X, ~θ) =
(

∂η(~xi, ~θ)
∂θ1

,
∂η(~xi, ~θ)

∂θ2
, . . . ,

∂η(~xi, ~θ)
∂θm

)
i=1,2,...,n

. (4)

The estimates ~θ are found as a result of the iterative process (~θ =
lim

k→∞
~θk):

~θk+1 = ~θk + ∆~θk,

[JT (X, ~θk)J(X, ~θk) + α2I]∆~θk = JT (X, ~θk)y(X, ~θk), k = 0, 1, . . .
(5)

Here y(X, ~θ) = ~t − η(X, ~θ), α is the regularization parameter, and I is the
unit matrix.

Another approach to solving problem (1)–(4), also used by the authors,
is to solve system (3) directly at each step of the iterative process. At
the present time, the method of pseudoinversion (or a generalized inversion)
based on a singular decomposition (SVD-decomposition) is most widely used
to solve this system. Modern versions of the MATLAB system have a built-in
function svd(A) that implements this decomposition for an arbitrary matrix
A of order n×m.

Algorithm and program for automatic determination of wave ar-
rival times. To determine the vector of wave arrival times t in the auto-
matic measurement mode, one uses an algorithm of determining the arrival
times of a quasi-periodic sequence of pulses at the background of Gaussian
noise and estimating their shape [5]. The following expression is taken as
an object function:

S1(t1, . . . , tM ) =
1
M

M∑
i=1

M∑
j=1

q−1∑
k=0

yti+kytj+k → max
Ω

(6)

where ti, tj (i, j = 1, . . . ,M) are arrival times of the first waves; yti+k, ytj+k

(i, j = 1, . . . ,M, k = 0, . . . , q − 1) are the waves of a given duration q;

Ω = {(t1, . . . , tM ) | 0 ≤ t1 ≤ Tmax−q−1, N−Tmax−q ≤ tM ≤ N−q−1,

q ≤ Tmin ≤ ti − ti−1 ≤ Tmax, i = 2, . . . ,M};

Tmin, Tmax specify a minimum and a maximum values of the quasi-period,
and M is the number of seismograms.

Criterion (6) is based on the maximum likelihood method. As a result
of some transformations presented in [6], relation (6) is equivalent to the
following expression:
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S̃(t1, . . . , tM ) =
M∑
i=1

G(ti) =
M∑
i=1

q−1∑
k=0

ũk(ũk − 2yti+k) → min
Ω

, (7)

where

ũk = yt∗1+k, k = 0, . . . , q − 1,

t∗1 = arg max
0≤t1≤Tmax−q−1

S1(t1) = arg max
0≤t1≤Tmax−q−1

q−1∑
k=0

y2
t1+k.

An algorithm based on the method of dynamic programming described in
(6) is proposed to solve the minimization problem (7).

The following recurrence formulas of dynamic programming are valid for
the minimization problem (7) on the set Ω:

S(n) = 0, if n ∈ [−Tmax, Tmax − Tmin − q − 1];
S(n) = min

n−Tmax≤m≤n−Tmin

(S(m) + G(m)), if n ∈ [0, N − q + Tmin − 1];

S(N) = min
N−q≤n≤N−q−1+Tmin

(S(n) + G(n));

Ind(n) = 0, if n ∈ [−Tmax, Tmax − Tmin − q − 1];
Ind(n) = arg min

n−Tmax≤m≤n−Tmin

(S(m) + G(m)), if n ∈ [0, N−q+Tmin−1],

where S(n) and Ind(n) denote a minimum value of the functional and a
minimum indicator at the n-th step.

The number of waves and their location in the sequence is determined by
the recurrent calculation in the reverse order by using a minimum indicator:{

m0 = arg min
N−q≤n≤N−q+Tmin−1

(S(n) + G(n)),

mi = Ind(mi−1), i = 1, 2, . . .
(8)

and the process terminates at such a step i = r, that Ind(mr) = 0.
As a result of calculation by using formula (8), we obtain a sequence

mr,mr−1, . . . ,m1 such that (t̃1, t̃2, . . . , t̃M̃−1, t̃M̃ ) = (mr,mr−1, . . . ,m1). The
quantity r yields the estimate M̃ of the number of pulses caught in the frame.
As a result of solving the minimization problem, we find an optimal set of
the wave arrival times and their number:

(t̃1, . . . , t̃M̃ , M̃) = arg min
Ω

S̃1(t1, . . . , tM )

Taking into account the maximum likelihood estimates and the found pa-
rameters t̃i (i = 1, . . . M̃) and M̃ , one can easily find the sought for compo-
nents of the U -wave:
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ûk =
1
M̃

M̃∑
i=1

yt̃i+k, k = 0, . . . , q − 1.

Planning the observation system. No matter how good the methods of
solving systems (3) and (5) may be, in practice they are not very effective in
the case of bad conditionality of matrix (4). Often, this is caused by poor or-
ganization of observations, namely, by inappropriate arrangement of seismic
sensors with respect to the borehole bottom. One can conclude that obser-
vations should be planned, that is, one should select such an arrangement
of sensors within the given territory that could maximally increase the con-
ditionality of matrix (4) and, hence, improve the estimate of the borehole
parameters. Specific problem statements of designing seismic observation
systems are considered in [1, 2]. A special software has been developed by
the authors to solve these problems.

3. Results of experimental material processing

The model data obtained from pulsed sources on the basis of the scheme
of direct and inverse VSP were processed by using the method described,
realized in the form of a software for PC. The first data were obtained from
deep boreholes (“Uraineftegas”) and granted by the authors [4]. The test
method used the measured arrival times of direct waves in the direction
“surface source-borehole receiver”. The processing results obtained from
11 operational oil wells (with depths from 1000 to 2300 m) are presented in
Table 1. The table shows the borehole number, its depth, a distance from the
borehole bottom to its head, errors in determination of the borehole bottom
by the coordinates x, y, z, and estimates of the velocities of the first seismic
wave. The data in the table demonstrate the effectiveness of the program
performance and a high quality of the experimental material. For instance,
the root-mean-square errors in the determination of the coordinates of the
borehole bottom for all boreholes are within 3–4 m, and for half of them––
within 1–2 m. It should be noted that for 7 boreholes with depths within
1685–1948 m, a distance from the borehole bottom to its head is 160–331 m.
For borehole No. 880 at a depth of 1846 m, the distance is only 61 m, for
borehole No. 735 at a depth of 1725 m it is 471 m, for borehole No. 5252 at
a depth of 1042 m it is 515 m (about half the depth) and for No. 436 at a
depth of 1836 m it is 700 m.

Results of measurements using the inverse VSP scheme. The model
experiments were made with the help of the method of inverse vertical seis-
mic profiling (IVSP) using a water-filled borehole 135 m deep. A scheme of
the experiments is presented in Figure 1. Powder explosions of 12.5 g and
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Table 1

Borehole
No.

Distance
from

borehole
bottom, m

Error in the
determination of

borehole bottom, m

Velocity
of seismic

waves,
km/sx y z

436 700.96 1.12 1.39 0.54 2.53
666 160.87 1.35 1.76 0.60 2.40
753 470.71 3.09 3.07 1.20 2.40
739 257.00 2.83 3.58 1.14 2.43
742 315.00 2.16 2.84 1.12 2.53
751 323.07 0.96 1.26 0.28 2.49
880 60.65 0.97 0.94 0.34 2.51
981 282.96 2.82 3.09 1.51 2.60

1337 331.03 3.35 2.64 1.47 2.51
1338 210.29 1.29 0.97 0.34 2.51
5252 515.61 1.86 3.84 2.84 2.12

30 g, respectively, were used as a source of seismic oscillations. Blasting con-
trol was remote, with the electric current passing from a 220 V supply line
through a wire in a glass with the explosive. The process of wire burnout
initiated the powder blasting. The reference signal was recorded from sensor
S1 located at the borehole head. The signal was initiated by a hydroacoustic
wave, which propagated from the source along the liquid column filling the
borehole cavity. The reference signal was transmitted via the lines to the
recording seismic station. A 12-channel digital seismic station “Lakkolit-M”
is used to record seismic signals. For each 12-channel arrangement of seismic
sensors (Figure 2), explosions at depths of up to 120 m were recorded. As
an example, Figure 3 presents the spectral-time function of the first wave
recorded from an explosion at a depth of 100 m. It follows from the figure

Figure 1. Scheme of model experiments
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Figure 2. Arrangements of sensors at profiles

Figure 3. The spectral-time function of an explosion record at a depth of 100 m
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Figure 4

that the bulk of energy of the explosion is concentrated in the frequency
range from 80 to 160 Hz. The arrival times of direct waves were automati-
cally determined with the help of algorithm (8). The results of determining
the first waves arrival times are illustrated graphically in Figure 4. The
arrival times are denoted by points in each of 11 seismograms.

The measured values were used to solve the inverse problem (1) in or-
der to determine errors in the calculation of the coordinates of the borehole
bottom and wave velocities for various source depths. The results of the cal-
culations are presented in Table 2. The table presents source depths, errors
in determination of the borehole bottom by the coordinates x, y, z, velocity
values of direct waves, and errors in their determination, respectively. The

Table 2

No. of
source

location

Error in the
determination of

borehole bottom, m

Velocity
of seismic

waves,
km/s

Error in the
determination

of velocity,
km/sx y z

br1 0.550 0.757 0.080 1.599 0.0058
br5 0.678 0.927 3.116 1.586 0.0061
br10 0.789 1.070 3.783 1.745 0.0077
br25 0.877 1.208 1.985 2.044 0.0099
br100 1.070 1.478 0.887 3.219 0.0186
br120 1.577 2.163 1.014 3.343 0.0276
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table data illustrate rather a high accuracy in determination of the source
coordinates (the error along the coordinate z at maximum depths does not
exceed 1 %, the horizontal deviation not exceeding 2 m).

Conclusion

A method to determine the coordinates of a borehole source of the pulsed
type, the time in the source, and the velocity reconstruction in a medium
has been developed, and its efficiency has been evaluated. The results of
processing of the data of the model experiments obtained with the use of
boreholes show a high potential effectiveness of the method for solving real
problems. Final conclusions will be obtained by using the continuous boring
data.
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