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Modeling solute transport in poroelastic shale

I.Q. Khaydarov

Abstract. The paper is devoted to modeling the solvent and solute transfer in a
chemically inert elastically deformable rock, the model takes into account only the
variation in stress and pore pressure. Chemical effects are taken into account by
changing the pore pressure and deformation of rocks in the transport equations.
For the numerical solution of the problem, combinations of the Laguerre integral
transformation method and the finite difference method are used. The results
of simulation for the model of solute transport through semipermeable shale are
presented.

Introduction

The presence of pore fluids can affect the deformation process and facilitate
or delay the destruction of the material [1]. Rock expansion while undrained
deformation causes a decrease in pore pressure and an increase in the limiting
stress value [2]. On the other hand, the response causes an increase in pore
pressure and a decrease in fracture stress [3].

An important stability mechanism for wells drilled in reactive shale for-
mations with water-based drilling fluids is based on the physicochemical
interactions between rock and drilling fluid. Namely, the pore pressure in
the bottomhole zone can be reduced due to the osmotic outflow of the pore
fluid from the reactive shale, which is caused by increased mineralization of
the drilling fluid [4–7].

The theory developed in [8, 9] to describe coupled mechanical, hydraulic,
and chemical interactions for liquid-filled porous bodies is based on a mod-
ification of Biot’s theory of poroelasticity [10–12].

In applied problems of elastic wave propagation, there is often a need
to take into account the porosity, fluid saturation of the medium, and the
hydrodynamic background. In particular, these aspects arise in exploration
geophysics when searching for oil layers and when choosing the parameters
of wavy impact on oil and gas fields for stimulating the production. Similar
issues exist in seismology in the geophysical monitoring of the properties of
the source zone in order to predict earthquakes [13]. Real media are porous,
fractured and energy-absorbing (energy is lost in the system).

Following [9], for simplicity, we consider a porous liquid consisting of one
uncharged solute with a mole fraction Ψ = xs in a solvent (water) with a
molar fraction xw = 1−Ψ. The solution is considered ideal. The chemical
potentials of a solute µs and a solvent µw have the form
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µs = pVs +RT ln Ψ, µw = pVw +RT ln(1−Ψ).

The molar volume of a solution (at atmospheric pressure) is

Vsol = (1−Ψ)Vw + ΨVs.

In [14], a chemoporoelastic model was considered for estimating the stress
profile of the near-wellbore space, and in [15], a system of chemo-thermo-
poroelasticity equations was solved using the implicit finite-difference
method. Further, in the presented paper, we assume (as in [9]) that the
bulk modulus K of the solution in independent of Ψ, and the problem is
restricted the isothermal case at a constant temperature.

1. Statement of the problem of solute transport in
poroelastic shale

Using the laws of conservation of mass and assuming that Ψ exhibits a weak
change [9], and after simple transformations, we obtain a system of parabolic
equations:

∂Φ

∂t
= A∇2Φ +H∇2Ψ, (1)

∂Ψ

∂t
= C∇2Φ + E∇2Ψ, (2)

where Φ = σkk +
3p

B
, σkk is the trace of the stress tensor,

A =
2GB2k(1− ν)(1 + νu)2

9(1− νu)(νu − ν)Vsol
[γVsx

s
0 + Vw(1− xs0)],

H =
2GB(1 + ν)(1 + νu)(γ − 1)RTk

3(νu − ν)
,

C =
(γ − 1)Bk(1− ν)(1 + νu)VsVwx

s
0(1− xs0)

3(1− νu)(1 + ν)αVsol
,

E =
Vs
αVsol

[γDVsol + (1− γ)RTkxs0],

γ is the transmittance, and D is the diffusion coefficient.
The functions Φ(x, t) and Ψ(x, t) in the one-dimensional case are deter-

mined from the system of heat conduction equations

∂Φ

∂t
= A

∂2Φ

∂x2
+H

∂2Ψ

∂x2
, 0 < x < L, t > 0, (3)

∂Ψ

∂t
= C

∂2Φ

∂x2
+ E

∂2Ψ

∂x2
, 0 < x < L, t > 0, (4)
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with boundary conditions

Φ
∣∣
x=0

= Φ0(t), Φ
∣∣
x=L

= Φ1(t), t > 0, (5)

Ψ
∣∣
x=0

= Ψ0(t), Ψ
∣∣
x=L

= Ψ1(t), t > 0, (6)

and zero Cauchy data

Φ
∣∣
t=0

= 0, Ψ
∣∣
t=0

= 0, 0 < x < L. (7)

To solve the initial-boundary value problem (3)–(7), we use the Laguerre
method of integral transformation in time [16–18].

After applying the Laguerre transform, the original problem (3)–(7) is
reduced to a one-dimensional boundary value problem for an ordinary dif-
ferential system in the spectral region, which is rewritten as:

h

2
Φm = A

d2Φm

dx2
+H

d2Ψm

dx2
− h

m−1∑
k=0

Φk, 0 < x < L, (8)

h

2
Ψm = C

d2Φm

dx2
+ E

d2Ψm

dx2
− h

m−1∑
k=0

Ψk, 0 < x < L (9)

with boundary conditions

Φm
∣∣
x=0

= Φm
0 , Φm

∣∣
x=L

= Φm
1 , (10)

Ψm
∣∣
x=0

= Ψm
0 , Ψm

∣∣
x=L

= Ψm
1 . (11)

To solve problem (8)–(11), we use a finite-difference method with the
second order of accuracy [18].

2. Numerical results

For numerical calculations, a hyperbolic system with the corresponding ini-
tial-boundary conditions (5)–(7) was considered instead of the parabolic
system (3), (4). Figures 1–4 show the results of seismic traces for Φ(t) and
Ψ(t) components calculated for a two-layer medium.

For our calculations, two different two-layer models of the medium with
the following common physical characteristics were set: xs0 = 0.1, ϕ = 0.14,
B = 0.92, T = 300 K, ν = 0, νu = 0.44, Vw = 1.8·10−5 m3, Vs = 2.6·10−5 m3,
R = 8.3 J K−1 Mol−1.

The boundaries of the first layer were defined as 0 ≤ x ≤ 5 · 10−4, and
for the second layer this was 5 · 10−4 ≤ x ≤ 10−3.

The wave field was modeled from a source located at the left end of the
first poroelastic layer: Φ0(t) = 0, Φ1(t) = 0, Ψ0(t) = f(t), Ψ1(t) = 0. The
time signal in the source was given in the form
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f(t) = exp

(
−2πf0(t− t0)2

κ2

)
sin(2πf0(t− t0)),

where κ = 4, f0 = 1 Hz, t0 = 1.5 s.
For the calculations presented in Figures 1–2, the following characteris-

tics of both layers were specified: diffusion coefficient D = 10−7 m2/s and
permeability k = 1.4 · 10−20 m2. For the first layer we assign the shear
modulus G = 0.6 GPa and transmittance γ = 0.7. For the second layer we
assign the shear modulus G = 1 GPa and the transmittance γ = 0.2.

Therefore, the coefficients of system (7), (8) for the first layer are defined
as A = 0.280·10−10, H = −0.899·10−8, C = −0.286·10−25, E = 0.126·10−10,
and hence the velocities of elastic vibrations in this layer are the following:
A1 = 0.530 · 10−5 m/s, A2 = 0.355 · 10−5 m/s.

Figure 1. Traces for the component Φ(t)

Figure 2. Traces for the component Ψ(t)
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The system coefficients for the second layer are defined as A = 0.936 ·
10−11, H = −0.299 · 10−8, C = −0.285 · 10−25, E = 0.631 · 10−10, and
hence the velocities of elastic vibrations in this layer A1 = 0.794 · 10−5 m/s,
A2 = 0.306 · 10−5 m/s.

For the calculations presented in Figures 3 and 4, the second model
was set with the general characteristics of both layers –– the permeability
k = 2 · 10−20 m2. For the first layer we take the diffusion coefficient D =
10−7 m2/s, shear modulus G = 0.6 GPa and transmittance γ = 0.7. For the
second layer the values are following: diffusion coefficient D = 2 ·10−6 m2/s,
shear modulus G = 1 GPa and transmittance γ = 0.2.

Therefore, the coefficients of system (7), (8) for the first layer are defined
as A = 0.182 · 10−10, H = −0.180 · 10−7, C = −0.572 · 10−25, E = 0.982 ·

Figure 3. Traces for the component Φ(t)

Figure 4. Traces for the component Ψ(t)
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10−11, and hence the velocities of elastic vibrations in this layer A1 = 0.427 ·
10−5 m/s,A2 = 0.313 · 10−5 m/s.

The system coefficients for the second layer are defined as A = 0.282 ·
10−10, H = −0.8 · 10−7, C = −0.152 · 10−24, E = 0.561 · 10−10. Hence, the
velocities of elastic vibrations in this layer are estimated as A1 = 0.749 ·
10−5 m/s, A2 = 0.531 · 10−5 m/s.

It can be seen from the presented figures, the corresponding two types
(A1 and A2) of transmitted and reflected waves for the component Φ(x,t)
were generated. The wave A2-type for the component Ψ(x, t) was generated.

Figures 5 and 6 show the results of calculations for the parabolic system
(3), (4) with the initial-boundary conditions (5)–(7). Calculations for the
second version of two-layer medium are presented.

Figure 5. Traces for the component Φ(t). The normalization is independent for
each trace

Figure 6. Traces for the component Ψ(t). The normalization is independent for
each trace
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