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Software implementation of asynchronous and
synchronous cellular automata with maximum
domino tiles coverage*

S. Kireev, Yu. Trubitsyna

Abstract. A two-dimensional asynchronous cellular automaton covering the cel-
lular array with a maximum number of domino tiles is considered. For the purpose
of parallel implementation, a transition to the synchronous operation mode was
made. The paper presents asynchronous and synchronous cellular automata im-
plementations. Their evolution and performance characteristics are analyzed. It
is shown that the synchronous automaton creates the desired pattern. In the im-
plementation of the transition rule, matching of multiple templates was optimized
by combining the templates into a multi-template and applying a single bitwize
matching operation.
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Introduction

Cellular automata is a powerful tool for studying the behavior of complex
systems. When working with such models, large data arrays can be used,
which is why the software implementation of cellular automata requires a
lot of time to execute. In such cases, the problem of parallelization arises
for running on parallel computing systems.

One of the actual problems for cellular automata application is solv-
ing the task of pattern formation [1-4]. In papers [5-7], Domino cellular
automata were proposed that form a domino pattern with different target
properties. A Domino cellular automaton [5] is an asynchronous cellular
automaton represented by a two-dimensional square lattice of cells with two
basic states “0” and “1”. As a result of the cellular automaton operation,
domino tiles are formed that cover the cellular array. A domino tile (Fig-
ure 1) is a two-dimensional array of size 3 x 4 (horizontal domino) or 4 x 3
cells (vertical domino). In the center of the array, there are two cells with
the state “1”, along the edges there are cells with the different state (for
example, “07).

The current work considers the problem of parallel implementation of
the Domino cellular automaton. Creating efficient parallel implementations

*This work was carried out under the state contract with ICMMG SB RAS (251-2021-
0005).
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for asynchronous cellular automata
is hard and requires the use of
complex algorithms [8,9]. At the
same time, there is an easy solu-
tion: to change the operation mode
from asynchronous to synchronous.
Synchronous cellular automata are
easily implemented in parallel us-
ing the domain decomposition tech-
nique [10,11]. However, we face a problem of admissibility for this change:
whether the modified cellular automaton is able to solve the same prob-
lem (for example, see [12]). The purpose of this paper is to implement a
synchronous version of Domino cellular automaton and compare its char-
acteristics with these for the asynchronous one, as well as with the results
given in [6].
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Figure 1. Domino tiles

The paper is organized as follows. Section 1 describes the Domino cel-
lular automaton. Section 2 presents asynchronous and synchronous cellular
automata implementations: algorithms and performance results. Section 3
describes the optimization technique used in the cellular automata imple-
mentation. Section 4 presents and discusses the results of asynchronous and
synchronous cellular automata operation and their comparison with the re-
sults of the original paper [6].

1. Domino Cellular Automaton

The Domino cellular automaton is represented by a two-dimensional cellular
array on a Cartesian grid. Evolution of the cellular automaton is a sequence
of iterations where a transition rule is applied to the cells for a certain
number of times. The array boundaries can be considered periodic or not;
in the framework of this work this is insignificant. The attributes of each
cell are coordinate indices ¢ and j, state s, and hit count h. The coordinates
i and j determine the position of a cell in the cellular array. A cell can
have one of three states: s € {“07, “1”7, “#”}, where “#” denotes the cells
that do not change their states during evolution, and is treated as “0” in
the transition rule. We consider such an initial state of the array, in which
the states of the boundary cells are set to “#”, and the inner ones are set
equiprobably to “0” or “1”.

The transition rule is a function that takes the states of the selected cell
(and its neighbors) as input and calculates the new state of the cell. In this
paper, a transition rule defined in [6] is used, which tries to maximize the
number of dominoes in a cellular array. The cell neighborhood is 24 nearest
cells forming a 5 x 5 square.
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Figure 2. Cellular array with a window (marked in orange)

The transition rule depends on the value of the hit count h. Auxiliary
structures “window” and “template” are used for its calculation. The win-
dow is a 5 x 5 part of the cellular array that contains the selected cell (in the
center) and its neighborhood (Figure 2). The template is a 2D array of
3 x 4 cells (horizontal template) or 4 x 3 cells (vertical template) represent-
ing a domino tile. There are 24 templates in total, 12 horizontal (Figure 3)
and 12 vertical. The vertical templates are obtained by rotating each of
the 12 horizontal templates 90 degrees clockwise. Templates are applied to
the window, and the match of the corresponding cells is determined. Each
template has a selected cell (yellow color in Figure 3) arranged in the center
of window (Figure 4). The selected cell does not participate in comparison.
Some templates in their original form may not fully fit in the window (see
Figure 3, bottom line), so their cells marked with “«” also do not participate
in comparison. A template matches if all the participating cells do match.
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Figure 3. Horizontal templates. With the selected cell (yellow), the template is
applied to the center of the window



16 S. Kireev, Yu. Trubitsyna

4l a8 #ls Next, consider calculating the value of the
¢ o olol hit counter h for a given cell of the cellular ar-
s o . oo ray. All 24 templates are applied to the window

with a given cell in the center, and the number
#1010 010 of matched templates is calculated. If there is a
# _ matching template with the selected cell marked

Figure 4. Template “1”, then the hit counter A is set to 100. Oth-

(with green border) ap- erwise, the hit counter A is set to the number of

plied to the window (with matched templates. The templates are designed

outer orange border) in such a way that the number of hits never ex-
ceeds four.

The states of the cells change as a result of evolution. Here we use the
transition rules described in subsections 3.1 and 4.2 of [6]. It is stated there
that the combination of these two rules seeks to maximize the number of
dominoes in the cellular array, so that the maximum coverage of the array
with dominoes can be obtained. The combined rule is as follows:

(random € {0,1}, if h =0, applied with probability o,
random € {0,1}, if h =1, applied with probability 7,

s'(i,7) = <0, if h=2,3,4, (1)
1, if h = 100,
s(i,7), otherwise,

where s(i, 7) is the previous state of the cell, s'(4, j) is the new state of the
cell, mg is the probability that ensures the introduction of noise into the
model so that the evolution of the cellular automaton can continue in the
case when all cells of the array have a hit counter equal to zero, m; is the
probability that introduces noise to minimize the number of cells with a hit
counter value of one and contribute to the formation of new dominoes.

The evolution of the asynchronous Domino cellular automaton occurs
by applying the transition rule (1) to arbitrarily chosen cells of the array.
Thus, the chosen cell state is updated right after the rule application. The
number of rule applications per one iteration of evolution is equal to the
number of cells in the array. Within one iteration, the rule can be applied
to some cells several times, and not to others at all.

In synchronous mode, the rule is applied once to all cells of the array
within single iteration, and their states are updated simultaneously. In soft-
ware implementation, simultaneity of changes is simulated by introducing
a copy of the original cellular array, where the new cell states are written
during the iteration.

Ultimately (both for synchronous and asynchronous modes), when ap-
plying the rule (1) with proper my and 7; parameters values, the array is
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Figure 5. Evolution process of the Domino cellular automaton, ¢ is an iteration
number, d is a number of domino tiles formed. Dark cells have state “1”, light cells
have state “0”

covered with dominoes. The example of the evolution process is shown in
Figure 5.

2. Implementation

Algorithm 1 presents one iteration of the asynchronous cellular automa-
ton Domino. The inputs of the algorithm are a cellular array (array) that
changes its state during the execution, the probabilities my and m; and a
list of domino templates (listOfDominoTemplates). In lines 3-5, cell coor-
dinates are randomly selected, and the current state of the corresponding
cell is obtained. If it is not a border cell (“#”), the new state is calculated.
In line 7, the window with the selected cell in the center is taken. Then all
the templates are applied to the window, and the “hits” value is calculated
(lines 8-16). In lines 17-30, a transition rule (1) is used to calculate the new
state (newState), which is further assigned to the selected cell.

procedure AsyncIter (array,mg, w1, listOfDomino Templates)
for step=1 to size(array) do
1 < randomRowNumber (array)
j < randomColumnNumber (array)
oldState <+ arrayli[j]
if oldState <> “#”
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window < getWindowByCenter (i, j)

hits < 0

for all dominoTemplate in listOfDominoTemplates do
if match(window, dominoTemplate) = true then

state < getSelectedCellState (dominoTemplate)
if state = “1” then

hits < 100

break
else

hits < hits + 1
if hits =0 then
if randomProbability() < my then
newState <+ selectRandom0f (“07, “17)
else
newState < oldState
else if hits =1 then
if randomProbability() < m; then
newState <+ selectRandom0f (“0”, “17)
else
newState < oldState
else if hits = 100 then
newState — “1”
else
newState + “0”
arrayli][j] - newState

Algorithm 2 presents one iteration of the synchronous cellular automa-
ton Domino. In this algorithm, the transition rule is applied to all cells of
the array, and the new state of the cell is written not to the original array, as
it was when implementing the asynchronous mode, but to the intermediate
one (newArray) (lines 31, 33). After the iteration is completed, the new
array replaces the original one (line 34). This provides an imitation of the
simultaneous update of the states of all cells.

procedure Synclter(array,m,m1, listOfDominoTemplates)
for all cell in array do

i < getRow(cell)

J < getColumn (cell)

oldState < arrayli][j]

if oldState <> “4#” then
/* Lines 7-30 from Asynclter procedure */
newArray(i][j] < newState

else
newArrayli][j] < oldState
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array < newArray

Both algorithms were implemented in C++. Figure 6 shows their per-
formance comparison (with the optimization technique applied, which is
described below is Section 3). The performance is presented in MCell/s
units (millions of cells processed per second) for different cellular array sizes
(including 1-width borders with state “#”). The tests were performed on
Intel Core i19-9900K 3.6 GHz.
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Figure 6. Performance comparison of asynchronous and syn-
chronous Domino cellular automata implementations

For very small array sizes, which are practically not interesting, the syn-
chronous implementation works faster. For medium and larger array sizes,
the performance of synchronous implementation decreases to a certain level
and remains constant, while the asynchronous implementation outperforms
the synchronous one by about 60 %, until the amount of its data does not fit
in the cache (with array size larger than 1024 x 1024). Then its performance
falls to about half of the synchronous implementation performance.

3. Optimization of the Hit Count Calculation

The transition rule is based on the results of matching the neighborhood of
a cell with 24 templates. Applying templates to the window sequentially
one by one takes a lot of time. Therefore, the matching procedure was
optimized, which gave a speedup of approximately 25 %.

The idea of optimization is to combine all 24 templates into a single
bitmap structure, which is dubbed “multi-template” therein. The multi-
template is implemented by two 5 x 5 two-dimensional arrays comprising
the elements which are Boolean vectors of length 24. Each original template
is mapped to a specific bit for each Boolean vector (Figure 7). In the first
array (“location”), bit values encode the location of the template in the
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Figure 7. Example of bit representa- Figure 8. Templates used to construct
tion of one cell of multi-template arrays an example of multi-template

window. In the second array (“values”), the values of the corresponding
bits encode the values of the template cells.

Consider the formation of a multi-template using the templates shown
in Figure 8 as an example. Let the template on the left corresponds to the
first bit of the Boolean vectors, and the template on the right to the second
one.

Figure 9 shows the encoding of the first template in a multi-template.
It can be seen that in the “location” array (left), in those cells where the
template is located in the window, the first bits of the Boolean vectors
take the value 1, the rest are 0. The first bits of the Boolean vectors of
the “values” array (right) completely repeat the values of the cells of the
corresponding template.

Figure 10 highlights the encoding of the second template in a multi-
template. In this case, the second bits were filled according to the same
principle that was described above.

100..0 | 100..0 | 100..0 | 000...0 | 000....0 000...0 | 000...0 | 000..0 | 000...0 | 000....0
100..0 | 100..0 | 110..0 | 010...0 | 010...0 000...0 000...0 | 000....0 | 000....0
100..0 | 100..0 | 110..0 | 010...0 | 010...0 000...0 000...0 | 010...0 | 010...0
100..0 | 100..0 | 110..0 | 010...0 | 010...0 000...0 | 000..0 | 000...0 | 000...0 | 000....0
000....0 | 000...0 | 000...0 | 000...0 | 000....0 000....0 | 000...0 | 000...0 | 000...0 | 000....0

Figure 9. Encoding of the first template in a multi-template, “location” array
(left) and “values” array (right)



Software implementation of asynchronous and synchronous CA. .. 21

100..0 100..0 100..0 | 000...0 | 000...0 000..0 | 000..0 | 000..0 | 000..0 | 000..0
100...0 100..0 | 110..0 | 010..0 | 010..0 000...0 100..0 | 000..0 | 000..0 | 000..0
100...0 100..0 | 110..0 | 010..0 | 010..0 000...0 100..0 | 000..0 -
100..0 100..0 | 110..0 | 010..0 | 010..0 000..0 | 000..0 | 000..0 | 000..0 | 000..0
000..0 | 000..0 | 000..0 | 000..0 | 000..0 000..0 | 000..0 | 000..0 | 000..0 | 000..0

Figure 10. Encoding of the second template in a multi-template, “location” array
(left) and “values” array (right)

The remaining 22 components of the Boolean vector are filled in the
same way. Thus, all 24 patterns can be encoded into one multi-template.
The result of applying a multi-template to a 5 x 5 window using bitwise
operations is a Boolean vector of length 24, where bit value 1 marks the cell
hits in a specific template.

4. Cellular Automata Operation Results and Discussion

First of all, the evolution of the synchronous and asynchronous Domino
cellular automata are compared. The number of dominoes depending on
the iteration number for both modes is shown in Figure 11. We use the
array size 100 x 100 (excluding border cells with state “#”), and the basic
values of the parameters my = 0.5, w1 = 0.005. To understand the influence
of the transition rule parameters on the evolution of cellular automata, we
change one of the probabilities, while the other was fixed.

The graphs in Figure 11 show that the evolution of both cellular au-
tomata can be divided into two stages. At the first stage, there is a rapid
increase in the number of dominoes to a certain level. The synchronous
cellular automaton reaches this level in about twice as many iterations as
the asynchronous one. It can be related to the fact that in the asynchronous
cellular automaton the maximum rate of propagation of changes is greater
than in the synchronous one, since each change in the state of the cell is
taken into account in subsequent changes in the states of neighboring cells
within one iteration. This is contrast to the synchronous one, where changes
in the state of the cell are taken into account only when the iteration ends.

At the second stage of evolution, both in asynchronous and synchronous
modes, the number of dominoes fluctuates, slowly increasing on average.
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Figure 11. Evolutions of Domino cellular automata depending on the operation
mode (left —asynchronous, right —synchronous) and parameter values (upper— o,
lower —7rq)

Once, the number of dominoes can reach a theoretical maximum (maximum
coverage). The growth rate of the graph at this stage determines the time
to obtain the maximum coverage. From the results in Figure 11 it can be
seen that the optimal values of the parameters (with the highest graphs)
are approximately in the ranges mo € [0.4,1.0], m; € [0.001,0.005]. When
the probabilities are within these limits, the second stage for synchronous
and asynchronous cellular automata proceeds similarly. However, the syn-
chronous cellular automaton is more sensitive to probabilities going beyond
the given range, in this case its graph goes lower.

In cases with unknown maximum number of dominoes, the following
stopping criterion can be proposed: evolution stops when the average num-
ber of dominoes does not grow for a given number of iterations (77). In this
case, averaging is done over a certain number of consecutive iterations (7%).
The greater the T; value, the closer we can get to the maximum number of
domino tiles, but the longer the calculation will take. T5 should be large
enough to smooth out fluctuations.

Next, the results presented in [6] are compared with those obtained by
our implementation in asynchronous and synchronous modes. Figure 12a
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Figure 12. Average number of iterations required to obtain the maximum domino
coverage

presents the average number of iterations required to form the maximum
coverage, depending on the size of the array. The parameters taken from [6]
were the following: mg = 0.5, w1 = 0.05 are probabilities presented in the
transition rule (1), nyuns = 100 is the number of program runs to get the
average.

It can be seen that there are certain similarities and differences between
the results. The shapes of the graphs remain similar, reflecting the propor-
tion of patterns with maximum coverage out of all possible (for each array
size). But the values themselves differ, and this difference grows with the
array size. In addition, it can be seen that the synchronous version obtains
the solution through more iterations than the asynchronous one.

Note that the probability values used in [6] are not within the range
of optimal values determined above. Let’s take the probabilities within
the range, for example, mg = 0.5, m; = 0.005. The corresponding results
are shown in Figure 12b. Now, our results with the new parameter values
are more similar to those presented in the original paper. That is, to get
the maximum coverage, our implementation with the new parameter values
requires about five times as many iterations as the original implementation
(with the parameter values taken from the original paper) - regardless of
the size of the array. It is also worth mentioning that the synchronous
cellular automaton requires, on average, about 15% less iterations to create
maximum coverage than the asynchronous one.

Thus, there is a difference between the results from the original paper [6]
and our results. The reason for the difference is currently unknown and
requires further investigation.
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Conclusion

The implementations of asynchronous and synchronous cellular automata
covering the array with a maximum number of domino tiles are presented.
When implementing the transition function, the matching of multiple tem-
plates was optimized using multi-template technique benefiting in a speedup
by approximately 25 %. Comparison of the results of cellular automata op-
eration showed that the synchronous cellular automaton is able to solve the
same problem as the asynchronous one in a comparable time. Thus, parallel
implementation of the Domino cellular automaton is possible. The results
obtained, however, differ from the results presented in the paper [6]. The
reason for this is to be determined in further research.
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