
Joint NCC & IIS Bull., Comp. Science, 16 (2001), 115–127
c© 2001 NCC Publisher

A model of cooperative solvers for

computational problems

A. Kleymenov, D. Petunin, A. Semenov, and I. Vazhev

The paper presents a model for building cooperative solvers for computational prob-

lems. We suggest an architecture of an environment which allows us to implement the

model. It consists of a kernel, a library of methods, a scenario language and a universal

internal representation. Methods have a special structure that provides their cooperation.

We describe the current implementation of this environment, give examples of several

schemes of cooperative solvers and present some computational experiments.

1. Introduction

At present, the solvers based on the interval methods of constraint pro-
gramming [1, 10] are frequently used in solving the applied computational
problems. These methods allow us to simplify the statements of problems,
to solve the problems in nonstandard statements or with imprecise values,
to combine variables of different types, etc. But these methods are not
universal, and there exist classes of problems for which they either are not
applicable at all, or have low efficiency (for example, the systems of linear
algebraic equations). At the same time, the combination of the constraint
programming methods with specialized ones allows us to obtain substan-
tial increase in efficiency and power of each method. So, building coopera-
tive solvers that combine different methods and use current computational
techniques (parallelism, distributivity, and so on) is a very promising and
important direction in the solution of complex computational problems.

There are many works in the field of building cooperative solvers [2,
3, 4, 5, 6, 7, 8]. Most of them either consider the methods to be used
for building cooperative solvers, or describe a concrete cooperative solver.
From our viewpoint, many solvers and architectures already built are rather
limited in capacity for being extended with other methods or use a very
rigid computation scheme. So the main purpose of our work is not to build
a cooperative solver, but to develop the environment for designing a family
of cooperative solvers and the tools for building them. These tools not only
do not contradict the methodological approaches already proposed, but also
provide a convenient and universal base for their implementation. Using
these tools and the model, we have built the prototypes for cooperative
solvers which demonstrate that our approach is very promising. In this



116 A. Kleymenov et al.

paper, we consider further developments of the works described in [9].
In our approach, the base for building a cooperative architecture is a

kernel and a set of methods-components. The kernel is a multicomponent
system, and its main function is to perform a computational scenario for
solving the source model. In addition, the kernel works as a resource and
information flow manager and provides the user interface. The computa-
tional scenario can be user-defined or a standard one. It, in fact, defines the
computational scheme to be used in the process of solution. In the scenario
language (script) we describe the set of methods to be used when solving the
problem, interaction between them, and, possibly, the tuning parameters.
Pipes are used for connection between methods. We consider this approach
to be rather flexible and multipurpose for building any solver.

The structure of the paper is as follows. Section 2 gives the main def-
initions and terms used below. The third section presents the GMACS
architecture and the tools which allow us to achieve cooperativity. Sec-
tion 4 is devoted to the current implementation of our approach. It also
contains examples of cooperative solvers and presents some experimental
results. Conclusion proposes the fundamental results and discusses plans of
future work.

2. The basic definitions

The fundamental notion of our approach is a model. Formally its definition
coincides with the common definition of the constraint satisfaction problem.
A model M is a triple (X, C, D), where X is a set of variables, C is a set of
constraints on them, and D is their domains. But in fact we treat a model
as a pair of sets: a set of constraints and a set of variables with their current
values. In the general case, any of the two components can be empty and
any set can contain the variables absent in the other set. The input and
output data for solvers and methods are specified in terms of models.

The task for a solver is to solve the source model. Its solution is the re-
sult of building, from the source model, one or several new models satisfying
certain requirements. The requirements can be, for example, to obtain a set
of interval variable values of a given maximal width, or the set of constraints
of the obtained model to be linear, etc.

In the paradigm of this definition of a solution, a solver can be consid-
ered as a transformer with a source model at its input and one or several
new models at its output. The idea to combine solvers in order to obtain
new ones with the required properties seems to be quite natural.

The solver can use only one method, but it can consist of a combination
of several methods, as well. A method is the least indivisible entity that



A model of cooperative solvers for computational problems 117

possesses the property of making one or several other models from a given
one. A semantic relation between the source and new models is also required
from the method, though in some special cases it can be absent, for example,
when some mutation generator is implemented for genetic algorithms. The
basic distinctions between a method and a solver are the use of control
structures and work with variables of the environment in the latter, though
in the simplest case they may coincide, i.e., the solver can simply call one
method.

The connecting link between methods is a pipe, an abstraction of the
communication interface. Pipes are used to transmit data between methods.
Availability of such a component makes it possible to transmit data and
control commands in a natural way. A pipe is an entity that has one or
several inputs and outputs and can get data at inputs and transmit them
to outputs.

It is easy to note that this approach is substantially oriented to modular
construction of solvers in the context of agent and distributed architectures.
Pipes can incapsulate a transport network protocol, which automatically
allows us to port the solver to the distributed architecture. No adaptation
of methods and algorithms is needed in this case.

A computation scheme is a set of methods, the sequence of their run-
ning, means for input-output information exchange between methods, and
the pipe structure connecting them.

3. Architecture of the environment for building

cooperative solvers

General Module Architecture for building Cooperative Solvers (GMACS)
is the environment for building cooperative solvers from separate compo-
nents, such as methods, pipes, and solvers earlier constructed. To build a
solver, we choose the necessary methods, specify their properties and com-
bine them into an integrated computational network, possibly, via pipes.
GMACS allows us to implement any model of cooperativity: synchronous,
asynchronous, sequential, or distributed.

By cooperativity we mean joint solution of parts (intersecting in the
general case) of the source problem by different methods, where each of the
methods presents its results to other methods. We do not restrict ourselves
to the case, when the methods only exchange the results of solution of their
subproblems (final or intermediate). We suppose that the methods can also
pass the results of analysis of the source models and some heuristics that
may be useful in the process of solution. For example, the module extracting
the linear part from the source model can analyze it (it is whether subdefi-



118 A. Kleymenov et al.

nite, degenerate, or something else) and pass the results of this analysis for
choosing the appropriate method to solve the system.

To implement different models of cooperativity, we propose the following
structure of a method. A method is the entity with at least one input and one
output called principal ones. A model is received through the principal entry
of the method, and one or several resulting models are returned through the
principal exit. A method can have several additional inputs and outputs.
Each input can receive some information, so each output can return some
information. Each input and each output can be connected to a pipe that
can receive and transmit information.

The basic working cycle of a method consists in receiving a model through
the principal input, processing the model, and passing the results to the prin-
cipal output. When processing the model, the method can read information
from additional inputs and pass some intermediate results to the outputs.
If no real pipe is connected to the input (output), we consider this input
(output) to be connected to the empty pipe which makes no information
exchange. When working with additional pipes, the method in the general
case absolutely does not take care of the source of this or that information or
which method will use its intermediate results. This approach substantially
simplifies the development and usage of the methods and combining them
into various solvers. The functions of the method, including the set of its
additional inputs and outputs, are defined by the method developer at the
design stage.

Along with the computational methods which, from the source model,
find the values of all or some of its variables, there also exist pseudometh-

ods which only perform transformations of the source models. Pseudometh-
ods completely satisfy our definition of the method, but are not methods
in the mathematical sense. As an example, we can consider a method that
builds the Grbner bases for the polynomial source model or a method that
separates the linear and nonlinear parts of a model. As a result, this method
returns two models that are solutions of the source model and each of them
may be empty. One more example is a unitor performing the reverse oper-
ation: it unites several models into one.

The architecture of the proposed system for building cooperative solvers
is shown in the picture.

The source model is written in a language of model description. It can be
one of well-known and generally used languages (for example, OpenMath or
a language of some available system), as well as our own internal language
(in particular, our input language). After that, the compiler translates the
model from this language into the universal internal representation (IR)
which is used below by almost all methods and is a communication means



A model of cooperative solvers for computational problems 119

Figure 1. Architecture of the environment for building cooperative solvers

between methods.
The library of methods is a dynamic library of independent components

(methods and pseudomethods) used for building the computation scheme.
Each method consists of the following components:

• interface is a set of functions to control the method, in particular, a
set of available pipes;

• computational algorithm is the computational part of the method;

• debugging is means intended to analyze the work of the method.

Script is a language for specification of the computational scheme. It
is used to write down the sequence of calls of methods and connections of
inputs and outputs of methods with the pipes, to specify the conditions for
termination of computations, to setup global settings of the computational
process, etc. The computational scheme so constructed can be considered
as a meta-method, since it possesses all the features of the method but is
not indivisible and uses other methods. In addition to the methods, Script
can call meta-methods earlier constructed and include them into the current
scheme of computations. The computational scheme so constructed can be



120 A. Kleymenov et al.

Figure 2. Interaction between the kernel components

written down into the library of meta-methods and used either as one of the
default built-in schemes or as a component for building new schemes.

The kernel of the system consists of several components:

• script interpreter is an engine that performs actions prescribed by the
script and initiates the computational scheme;

• pipe manager is a process that controls the pipe functioning;

• Memory manager is a system that efficiently control the use of memory;

• who are you? This is a mechanism of inquiry of the components about
their properties and capabilities;

• user interface;

• debugging mechanism is a system that controls the computations.

The main function of the kernel is to initiate and run the given compu-
tational scheme. Interaction between the kernel components is shown in the
picture.

This architecture is easy to extend and upgrade, in particular, it allows
us to model most of the existing cooperative systems. To do this it is
sufficient to write a compiler from the language of the problem description



A model of cooperative solvers for computational problems 121

and a transformer of the control constructions of the system to be modelled
into the script. In some cases it may be necessary to write wrappers for the
methods, for example, for the case of using the methods of already available
systems.

4. Current implementation

The concept of building cooperative solvers described in the above chapter
has been partially implemented within an experimental system based on the
constraint programming methods. The current implementation includes a
universal internal representation, a library of methods, a script and a kernel.
At present, not all components of the kernel are implemented completely.
As a result, the kernel of the system looks as shown in the picture:

The internal representation of the model has been specified and im-
plemented. We have a clearly determined interface for building a model
in the internal representation and the interface for receiving and changing
its data. This interface is used by the methods and the script to call the
internal representation.

A large library of methods has been implemented. All the methods
have common interface, which essentially simplifies the development and
introduction of new methods. In particular, the interface supports setting
of the initial data, receiving the results, running of the method, etc. Each
method has a set of its specific attributes to identify it in the library of
methods. There are also varying attributes whose values have effect on the



122 A. Kleymenov et al.

method functioning. Using them, we can control the process. At present,
the library of methods includes the algorithms of constraint programming
on finite domains (AC-4 and AC-5) and on continuous domains (interval
AC-3), the Newton interval method, the methods for solution of interval
systems of linear equations, linear programming methods (an interval ex-
tension of the ”interior point” method), a wide set of methods for search
over continuous and finite domains, automatic differentiation and a number
of other methods.

The Python language is used as a script in the current implementa-
tion. Script performance is supported by the script interpreter which, in
addition to creation of a computational scheme, provides and controls its
functioning. Script explicitly describes which methods and meta-methods
are used in it and how they interact. Script can contain all the control
structures of Python; it has access to global variables of the environment
and can tune computations in the optimal way. The user interface allows
the interpreter to be controlled and the computational scheme and the data
to be corrected in the interactive mode. Thus, the debugging mechanism
in this implementation is inseparably linked with the user interface and does
not contain any special means.

At this stage of the system development, the notion of the pipe is ab-
stract: data transmission between the methods is the function of the inter-
preter. The methods can receive at their inputs the output models of other
methods, the current values of all or selected variables and other information
according to the description of interaction between methods in the script.

Let us consider some examples of building cooperative solvers with the
help of the GMACS architecture.

Example 1. A simple solver with sequential cooperativity. In this solver
the source model is received through the input of the method of interval con-
straint propagation (ICP) and its result is passed to the bisection method
(BISECT). This method divides the obtained model into two submodels
with different domains of one or several variables. The two resulting mod-
els are again received by ICP and the process goes on until all solutions
are found. T is the method for checking whether the model is a root and,
depending on this, passes it to one of the two outputs. Some works on co-
operative solvers call this scheme Sequential Evaluation. Below we present
the computational scheme and its description in Script.

Example 2. A cooperative solver of nonlinear problems. In principle, it
differs from the first one only in that there is an additional Krawczyk

method for solving the problem asynchronously with the ICP method. The
Krawczyk method implements the Newton interval method and, similar to
ICP, is a narrowing method. In this scheme the methods use an additional



A model of cooperative solvers for computational problems 123

pipe for exchange the intermediate results with each other. If no method
can refine the obtained solution, the result is passed to the bisection method
which divides the domain in two parts. The corresponding computational
scheme and its Script representation are:

Example 3. A cooperative solver for nonlinear problems with a linear
part. This example uses a more complex scheme containing the previous
solver as its part. The source model is received through the entry of the
pseudomethod (L) which separates the linear and nonlinear parts of the
model. The linear part is sent to the solver of linear equation systems (LS1).
The nonlinear part of the model is received by the solver from the previous
example. In this case, before sending the source model to the nonlinear
solver, the domain intersection method (I) intersects current values of the
variables with the values obtained in the LS1 method. Note that in this
example the bisection method is controlled by the L method, namely, the L
method transmits the set of variables of the nonlinear part via a special pipe.
Only these variables will be used in bisection. This pipe also determines the
set of variables used by the T criterion for finding out if this model is a
solution of the nonlinear part of the source model. It can be described as
follows.

Two examples of applying our approach to solving the computational
problems are given below. We present scenarios in Script describing appro-
priate computational schemes and give the run time for them.



124 A. Kleymenov et al.

Problem 1. We consider a model that consists of linear and nonlinear equa-
tions. The model has 21 variables and 21 equations. It is possible either to
solve the system only by the method of interval constraint propagation or to
use a combination of ICP and the interval Gauss method. This combination
is described by the following scenario.

from solver import *

m = model("test1.txt")

while 1:

tmp_m = m.clone()

if run_method("gauss",m) != Methres_OK

or run_method("cp",m) != Methres_OK:

sys.exit(1)

if m.compare(tmp_m,eps):

break

print_vars(m)

Problem 2. A global optimization problem (a nonlinear function in 5
variables). We look for the global minimum of the function by splitting
the domain of its values from the left to the right and applying ICP on
subdomains. We need to find the result with a given accuracy (10−10).
The first approach is to apply the algorithm with this accuracy. The second
approach is to start with a low accuracy in order to narrow the initial domain
and then to refine domains iteratively by increasing the accuracy. A scenario
for this approach is as follows.

from solver import *

m = model("test2.txt")

acc=0.1

while acc > 1e-9:

if run_method("bisect",m,LEFT,"objf",acc) != Methres_OK:

print "no solution"

sys.exit(1)



A model of cooperative solvers for computational problems 125

acc *= 0.1

print_vars(m);

Here we provide the computational results for these problems. We have
performed the experiments on the Athlon-600 processor (time is in seconds).

Problem Only ICP By scenario

Problem 1 36.0 26

Problem 2 6.7 0.3

5. Conclusion and future work

This paper proposes a model for building cooperative solvers. The emphasis
is made on the combination of methods intended to solve the computa-
tional problems, but we believe this approach to be applicable to a wider
class of problems. The architecture that we have proposed differs from al-
ready known ones in some essential points. In particular, we do not restrict
the range of methods to be used for building solvers and allow the devel-
oper to implement any computational schemes. The availability of pipes
for synchronization and transmission of control signals makes it possible to
implement mixed asynchronous-synchronous schemes. The possibilities of
building the distributed solvers on the basis of this architecture open bound-
less prospects in using computational capabilities of the cluster systems and
local and global networks, too.

Our approach is very convenient for constructing means of solver visual
design and can be used in cooperative solver designing and prototyping.
Besides, the pipe mechanism allows us to integrate easily the schemes built
on the basis of this architecture with GUI, which let us consider this product
as a RAD tool for creating computational applications.

We have already implemented a considerable part of this architecture and
on this basis a number of cooperative solvers have been built which show
the possibility of a substantial increase in computational capabilities of the
applied algorithms. The results of experiments also show great potentialities
of GMACS as a means for building cooperative solvers.

It is clear that further investigations, experiments and new projects are
needed to increase efficiency and create practical applications. In particular,
we plan the following work on the development of our approach.

1. Separation between stages of work of the interpreter and computa-
tional scheme. In this case there appears an opportunity for more
advanced communication system between methods independent of the
script describing the corresponding computational scheme.



126 A. Kleymenov et al.

2. Implementation of pipes and control means for them. In particular,
this gives us opportunity to perform the distributed computations.

3. Creation of debugging means for a computational scheme.

4. Creation of a visual design environment.

5. Creation of intellectual constructors for computational schemes using
the mechanism ”Who are you?”

6. Creation of the mechanism for generation of specialized solvers accord-
ing to the input script. Such a solver will be completely optimized to
the given computational scheme, which allows us to increase the com-
putation efficiency at the cost of decrease in overhead expenses on
building, communicating and debugging the scheme.

7. Replenishment of the library of methods and search for the most ef-
fective their combinations.

References

[1] Babichev A.B., Kadyrova O.B., Kashevarova T.P., Leshchenko A. S., Se-
menov A. L. UniCalc, A Novel Approach to Solving Systems of Algebraic
Equations. Interval Computations; 5(3):29-47, 1992.

[2] Hofstedt P. An Architecture for the Combination of Constraint Solvers. In
Proceedings of ERCIM/COMPULOG workshop on constraints. CWI, Ams-
terdam, 1998.

[3] Marti P. and Rueher M. A Distributed Cooperating Constraint Solving Sys-
tem. International Journal on Artificial Intelligence Tools, 4(1&2):93-113, 1995

[4] Monfroy E. From Solver Collaboration Expressions to Communicating and
Coordinated Agents. In Proceedings of the International Workshop for
Object-oriented and Constraint Programming for Time Critical Applications,
COTIC’99, Lisbon, Portugal, 1999.

[5] Monfroy E. A Solver Collaboration in BALI. In Proceedings of the 1998 Joint
International Conference and Symposium on Logic Programming (JICSLP’98),
Manchester, England, The MIT Press, pages 349-350, 1998.

[6] Monfroy E. An Environment for Designing/Executing Constraint Solver Col-
laborations. In Proceedings of the Second International Conference on Multi-
Agent Systems (ICMAS’96), Kyoto, Japan, The MIT Press, 1996.

[7] Rueher M. An Architecture for Cooperating Constraint Solvers on Reals. In:
Podelski, A., editor, Constraint Programming: Basics and Trends, vol. 910 of
LNCS, pages 231-250, Springer, 1995.



A model of cooperative solvers for computational problems 127

[8] Semenov A., Kashevarova T., Leshchenko A., Petunin D. Combining Vari-
ous Techniques with the Algorithm of Subdefinite Calculations. In Proc. of
the 3rd International Conference on the Practical Application of Constraint
Technology PACT’97, London, England, pages 287-306, 1997.

[9] Semenov A., Petunin D., Kleymenov A. GMACS — the general-purpose mod-
ule architecture for building cooperative solvers. In Proceedings of the 2000
ERCIM/Compulog Net Workshop on Constraints. Padova, Italy, 2000.

[10] Van Hentenryck P., Michel L., and Deville Y. Numerica: A Modelling Lan-
guage for Global Optimization. MIT Press, 1997.



128


