Bull. Nov. Comp. Center, Num. Anal., 10 (2001), 19-24
(© 2001 NCC Publisher

Bias of the Bird type estimator*

A.A. Kolodko

1. Introduction

Let us consider a system of spatially homogeneous Smoluchowski equations
in the following form:

Ouy(t 1
’gi ) - 5 Z Kijuzu; — ZKliului, 1>1, 1)

with monodisperse initial conditions
u1(0) =1, w(0)=0, I>2. (2)

We will suggest that the coagulation coefficients are finite, i.e., there
exists such kmax < 0o that max;; Kj; < kmax. Then, we will consider the
time interval [0, 7], where there exists the unique solution to problem (1), (2)
conserving its mass in such a way, that ;5 lw(t) = 1, t € [0,T]. The
questions of the uniqueness, existence and mass conservation are discussed
in particular in [1].

Among numerical methods for solving this problem, Monte Carlo algo-
rithms, based on the direct simulation of the coagulation process in a model
particle system, play an important role. Note, that the Smoluchowski equa-
tions have nearly the same structure, as the Boltzmann equation; so, it is
quite natural to use for them the well-developed stochastic algorithms for
solving the latter. The present work develops the algorithm constructed
by Bird [2] for solving the Boltzmann equation and applied for the Smolu-
chowski equations in [4, 5].

The Bird type method is based on the statistical simulation of the co-
agulation process in a model particle system. Its parameter is the number
of particles N in the model system. The state of the system at moment ¢
is defined by the vector (ly,...,Ix;t). Here l; defines the size of the i-th
particle of the system. The evolution of this system is described in detail
in [3, 4] and the estimator of the solution to (1), (2) can be presented as
follows:
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Ui(t) = Z&,,J(,), i>1.

The initial state of the system for problem (1), (2) is defined as follows:
li=11=1,...,N,ie, Ui(t) = ui(t), s > 1.

In [4, 5], the asymptotical unbiasedness of this estimator as N — oo has
been proved, assuming that the “molecular chaos” hypothesis is true for the
pdf of the states of the system. The present work is devoted to the investiga-
tion of the bias of U(t) in the dependence on the value of parameter N. The
results are presented of both analytical (Section 2) and numerical (Section 3)
investigation.

2. Analytical estimation of the bias
We denote by u(t) = (u(t))i>1 the solution to (1), (2) and by U(t) =

(Ui(t))i>1 the estimator, constructed by the Bird type method.
Let us define the space of sequences

Xq = {I = (Il)l_>_1 Ellm” < C}) q€ [07 1])
1>1

where C is a constant, endowed with the norm ||z||g = 3/, 1%]z;|. Note, that
the nonnegativity of the components of u(t) and U(t) and mass conservation
property (see, e.g. [6] and the description of the Bird type method in (3, 4])
yield u(t) € Xy and U(t) € X

Finally, let us denote cov(t) the following covariance vector, related to
the estimator, constructed by the Bird type method:

cov(t) = (Z Cov([U;(t), U; (t)])

j>1

sThe following theorem provides the estimation of the bias of the Bird
type method for ¢ = 0.

Theorem. For each N and t € [0,T] the following inequality is valid:

IEU®)] - u(®)llo < ( 3y supl|cov(r)l

) exp(4kmaxt) — 1
AN 2

Before proving the theorem, we will formulate without proof the following
lemmas.
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Lemma 1. Let us denote by K(z) = (Ki(z));>, the following operator

on Xy:
Z Kijziz; — Z Kjz;.
1.+_1-—l i>1

The following inequalities are valid:

IK(2) = K(y)llg < 4kmax|lz —yllg for each z,y € Xy, (3)
IEKU ()] — KEU#))llo < 2kmax|| cov(t)]lo. (4)
Lemma 2. Let 0(t) be a function continuous on [0,T] and suppose that

0(t) < [H(ab(T) + B) dr for each t € [0, T), where a and B are constants.
Then, for each t € [0,T) :

o(t) <

RI®™®

(exp(at) — 1). (5)

Proof of the theorem. Let us denote py(l1,...,IxN; t) the pdf of the states
of the model system in the Bird method. Then, we denote

URTHED DR DD SIRTED DD DERPRE) S TR 153 )8

U>1 LoDl >1 Lo>144a>1 Iy>1

=T . T . 3 ol Ini 8).

Ii>1 lio1210412>1 IN>1

It was shown in [3, 5] that the following equation is valid for PS‘}) (it 1>1;

gt D)= %( 3 KipQ(i,5; t) - 3 Kapld (1, 5; t))- (6)

i+j=l >1
Note, that
IE [Un (t)Un(t)]
= N2 > E (ZZ&M ont;pn (U1, - - U t))
11>1 ~n2>1 \i=1j=1

1 N N

- 355 2 2 (S 2 + S omtontin .t 0)
1h1>1 N>1 i=1 j=1, i=1j=1
J#

= 'ﬁ(sl + Sz),

where
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N i
S2 = 3 Y bmt,bu, Y (li; 1) = Nomnply (m; 1),
i=11;>1
N N
= S T bmbu,p? (z,,z,, t)=N(N - l)pﬁv’(m n; t).
i=1j=1,j#i;>11;>1
Finally,
1
B [Un(00n(0)] = 0 (3 ) + 10mmp@(mi ). (7)

Analogously, E [U;(t))] = m(l; t). Then, (7) yields

N-1 1
5P (6,3 t) = BU(OU;(8)] - 1:8mapy) (m; ¢)

and equations (6) can be written as follows:

]E[Ul(t Z K,]E[U,]E[U]] - [Ul] Z KilE[Ui] +
z+]—-l i>1
z K;; Cov[U;, U] — Y Ky Cov([Us;, Up] — —R;(t), (8)
t+_1—l i>1
where
1 : 2 ;
Ry(t) = 3 3 K605 (35 t) — ZKa&'ng)(%; t)
i+j=l i>1
1

= SI(0dd())K 1 1P (1/2; t) - KupQ (1 ).

»n

Note, that

i>1 >1

Using (1), (8), (9), and inequalities from Lemma 1, we can obtain that

0 3kmax
5B (O] = u(t)lo < Shnax @] — u(®)lo + Hemee]|cov(e)o + ez,
and according to the choice of U(0),
IEU ()] - u(®)llo
< [ (St B )] = (el + P cov(r)lo + 2222 ) s
max 0 'max 0 2N

Then, Lemma 2 yields the inequality, stated in the theorem. O
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3. Numerical investigation of the bias

- Theorem formulated in Section 2 shows that the information about the
vector

cov(t) = (Z COV[Ui(t),Uj(t)])

i>1 121

allows to estimate the value of the bias of the Bird type method. Though
this value still cannot be estimated analytically, the numerical investigations
show that it is inverse to the number of particles in the model system N.

In Table 1, we show the values of several components of vector cov(t)
(their maximum values with respect to ¢ € [0,T]) for different values of N
for K;j; =1 and T = 20.

Table 1. The value of Supy¢o;) covi(t) for K;j =1 and T = 20

N =1 =2 1=4 I=8 N Traj

128 1.62e—3 2.58e—4 1.21e—4 2.25e—5 240000
256 8.11e—4 1.32e—4 6.05e—5 1.12e-5 120000
512 4.06e—4 6.80e—5 3.09e—-5 5.47e—6 60000
1024 2.06e—4 3.45e—5 1.52e—5 2.89e—6 30000

Table 2. The value of sup;c (o 1 |[E[U ()] — u(t)||q for Kij =1 and T = 20

N g=0.1 =02 g=104 N Traj

128 | 7.68e—3 = 0.12e—3 | 7.22e—3 +0.11e~3 | 6.07e—3 + 0.09e—3 | 240000
256 | 3.87e—3 £ 0.12e—3 | 3.64e—3 £ 0.1le—3 | 3.00e—3 + 0.09e—3 | 120000
512 | 1.90e—3 +0.12e—3 | 1.78e—3 £ 0.11e—3 | 1.50e—3 + 0.10e—3 60000
1024 | 1.01e—3 +0.12e—3 | 9.50e—4 + 1.11e—4 | 7.96e—4 + 0.97e—4 30000

The numerical investigation of the value of

sup [[E[U(2)] - u(t)ll,
t€[0,T]

.for different values of ¢ shows that it vanishes inverse to N with its growth.
In Table 2, the results of these investigations are shown for ¢ = 0.1, g = 0.2,
and g = 0.4 for different values of N for K;j=1and T = 20.
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