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Numerical methods in elasticity
problems*

A.N.Konovalov and S.B.Sorokin

The paper deals with some results, which are connected with the numerical solution of
elasticity problems in the case of an arbitrary curvilinear coordinates system. The main
ideas will be illustrated for the case of the Cartesian coordinates system.

Let 1, z3, z3 be a Cartesian coordinates system, ?(ul,ug,ua) an
elastic displacement vector (column) and ¢;x be components of symmetric
elastic strain tensor for linear (geometric) medium. Then,

Oui | Ouy

2k = 2y + 9z;”

i,k=1,23 T =RT. (1)

Let the components of the symmetric elastic stress tensor for linear (phys-
ical) medium be denoted by o;;. Then, (Hooke’s law):

Oik = Mipdiv W + 2uey, i,k=1,2,3; T =K7. (2)

The differential equations of equilibrium in the field of given mass forces
?( f1, fa2, fa) may be formulated as follows:

3
_L?+7_o<_._>k§=l: Fo, +£;=0, i=1,23. (3)

Assume that D C R® - single-connected region and v = 8D is sufficiently
smooth. -

We must define fifteen functions ui(M), ei(M), oix(M), M € D, which
satisfy fifteen equations (1)-(3). Some functions: u;(M) or oit(M) must
satisfy the given boundary condition. For example,
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3
zo’ik(M')nk=9;(M'), Mer, i=1,2,3. (4)

or i _ , _
w(M')=g(M'), Mevy, =123 = - (5)
As usually N

/7dM+/?dM’_=O, /?x?dM+f§?x?dM'=o. (6)
D ¥ D ¥

There are two ways of solving the static problem. The first one is
bound up with determination of the elastic displacement vector @ . After
that we can deduce ¢;; and o from (1), (2). Equa,tlon of equilibrium (3)

“needs’ tobe modaﬁed as fo]lows

‘ du; Ou o
4” gj paqu+4(5—+éhQ]+ﬁfo -
| i=1,2,3.
Instead of (4), we have
| 3 | du;  Oug ,
> [Mudivw +,u(-5-- + 5—)]”,,: = g(M"). (8)
k=1 i : :

The unique solution can be obtained, for example, under such a condition

(E’,l)szi’dM:O, (7 x 7, )b /‘F’x?dM:O. 9)

The present-da,y way of working up the numerical method of solving the
static problem is as follows. Static problem (6)—(9) is substituted for the
equivalent variational problem

min{/(T) = W(T)+ 2T, D)o - AT, T (10)

~Here W () is twice the elastic strain .potential energy, expressed in terms
of the elastic displacement vector. The methods of construction of the
. difference problem

AT+ Fr=0 o (11)
from (10) are well-known. These methods guarantee the self- adjoining of

the operator A. Indeed, it is the result of the fact that the quadratlc form
W (') generates a symmetric bilinear form
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(eie(W), 0i(W))D-

In the case of an arbitrary nonorthogonal curvilinear coordinates sys-
tem, the main difficulties of solving problem (6)-(9) are both the construc-
tion of the operator A, and the proving of the positive definiteness of A.

Now let us consider the second way of solving the static problem. In
this case the elastic stress tensor components ;i or the elastic strain tensor
components ¢ is first determined. With the help of (1) we then determine
the elastic displacement vector components u;.

It is not important which method we use when determining &;;, but
u; can be determined only from (1). Hence, the first we need is to know
about the solvability of problem (1). The well-known conditions of solv-
ability (Saint Venan’s conditions) in the Cartesian coordinate system may
be written as follows:

0%i; | w0 | 0%
- dzidzi Oz0z;  Oz;0zi OT0x)

Only six equations from (12) are differént. Let us denote them as

i, k=1,2,3.  (12)

Ga(T)=0, a=1,...,6. (13)

Therefore, if we choose the second way of solving the static problem, the
components £;; (or o;;) must satisfy conditions (13), regardless to a par-
ticular method of determination of ¢;; (or o).

In what follows, we will consider only homogeneous boundary conditions
(4) or (5). ,

Let us write another form of conditions (13). To do this we will consider

the column-vectors & (€11, €22, €33, 212, 2613, 2623), 77 (M1, M2z, M33s M2,
Tas 123), ?(vl,vg,vg), ik = Eki, Nik = M- We define the connection

between ¢ and 7 from (2) as follows:
T=KE, €=K77, (14)

Here K is a 6x6 matrix according to Hook’s law ('2).
Let us define H(7') as the Hilbert vector space Ly(D). The scalar
product in H(7) is defined as usual

3 3
=y (-tv§",v§2’) = Z/@f”n}?’d.u, (15)

i=1 =1 D

[?(l)q ?(2)]

H

Let us define H{(7) as the Hilbert \.-ector space L9(D). ‘The scalar
product in Hy(7) is defined as follows: '
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’

3 3
> (nf;),fgf)) =y /nf,f’ff,f’dM, k> i

i,k=1 i,k=1 D

[_1_?,(1)’_1],,(2)]Erl _ (T],(l)’},{_l?],,(?)) - (T?,(l) ?(2)) _

(16)

The operator R : H(7) — Hl(?) = Hy(K~'7) will be defined with
the help of the matrix-differential operator

2 0 0 £ & o\T

Bzy 3r; Bz
R=]10 2 0o & o 2Z|. (17)

a8 d -]
0 0 3z3 0 3z; Bz,

Here the symbol T' denotes a transposition, the space Hl(?) is the image
of Hi(7') obtained by mapping K~'. The operator L : H(7) - H(?)
will be defined with the help of tlie matrix-differential operator

i) 2]
= 00 &£ 2 o
L= 0 & 0o £ o £]. (18)

0 0 & o £ 2
If we consider problem (1)-(4), then the range of definition of the
operator L consists of the vectors 7], whose components are sufficiently
smooth in D and satisfy the boundary condition (4).
If we consider problem (1)—(3), (5), then the range of definition of the
operator R consists of the vectors ¥°, whose components are sufficiently
smooth in D and satisfy the boundary condition (5).

Theorem 1. Operator ~L is conjugate to R : —L = R*, or
[R?, ?131 = _[?:LW]H' (19)
Therefore, instead of (7) we have
AT+ f =R'KRT+ ] =0. (20)

Here and in (7) A is Lame’s operator. Theorem 1 states that A = R*K R.
Now it is easy to see that conditions of solvability of equation (1)
T = R are
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[T, %)y, =0, V¥: R*Y =0. (21)

The conditions (21) and (13) define the same subspace Hz(Z") C Hl(?).
The operator R™! exists in this subspace.

Now we may give a new statement of the static problem of elasticity
theory “in terms of stresses™ in subspace Hy(7) = Ho(KE) C Hy(7)
we define the vectors @, F, W from equations

RR'Z+Rf =0 - ¥T=K'9 - T=R'F. (22

Now we may give also a variational formulation of the problems (22)
in terms of stresses

min{®(7) = (RR*T, @)+ 2, Rf)}, T € HyT). (23)
But

87)=(RT+ T BT+ 1)~ (F.T)=F@) =171

The functional F(@) is the functional of the least square method in the
problem

R*7T + ? =0. .
In terms of the displacement vector @, the functional F(7) is a functional
of the least square method in the problem
R'KR% + f =0.
We can now determine the main requirement for any numerical method
“in stresses”: the method does not have to remove the vector @ from the
subspace Ha(7).
Consider the next numerical method
?m+1 ?m
- m —
—h kL RWR;T, + Rnf,=0. (24)

Tm+1
Theorem 2. If 7:?2 € Hy(T), then
Th € Hy(T), m=12,.... (25)

The exploration carried out permits to notice general principles of con-
struction of numerical methods for solving the static (dynamic) problems
in the elasticity theory. The operators of the static problems A = R*KR
and RR* are factorized and self-adjont. By choosing R as a generating
operator (in terms of A.A. Samarsky) and constructing its approximation,
we get the approximation of the operator R* from
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‘[Rh—l?h?h]}{ = [?h:Rz?h]H' (26)

This way always gives a self-adjoint approximation for the static problem
both in case of the “displacement statement” (% — & — @) and in case

of the “stress statement” (0 « & — ). Besides, the approximations
possess the positiveness too

[RZ.KR;,TL};,,?}!]H = [I\"%Rh?h,I(%Rh?h]H] >0,
[RLR; T 1, ?h]ﬂl (R G h, Ry G h], > 0.

Here we point out only changes connected with the curvilinear non-
orthogonal coordinate system.

Let z;, x2, x3 be a Cartesian rectangular coordinates system and 1y,
Y2, y3 a curvilinear non-ortogonal coordinates system. The mapping = — y
is not singular. Hence, the covariant components g;; and the contravariant
components ¢g** of the metric tensor are known.

The displacement vector @ and the strain tensor & will be given by
the covariant components u; and ¢;;. The vector of mass forces and the
stress tensor will be given by the contravariant components fiand o
In (17) and (18) we must substitute Vo instead of 3:: , where 7, is a
covariant derivative. Finally, instead of (2) we have

T = I['l?,
where K = C*KC > 0 and the matrix C' gives the conformity between
oik in the system zy, 25, 23 and o** in the system w1, 2, ¥s.
In conclusion, we have to mention the problem connected with the

covariant derivative approximation. Let D = {a, < y, < bo}. Denoting
the basis and the cobasis by € ,(M) and & (M) respectively, we have

— — —P
Further @ = uP€, or W = u, ¢ , where
3
Pe = e
wPEe, = E uPe,
p=1

O _0_ =P
.,aya Y )

(g:: e’ Fs )_‘:.p = (Vaup)?p-

(27)
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Thus, formula (27) defines the covariant derivative of the covariant vector
components

du R
Valp = a_yf — Tpolts. (28)

We would like to notice two main properties of the covariant derivative:

— the covariant derivative of a metric tensor is equal to zero
Vo gsp = 0, (29)
— the property of the lowering of indices
Va tp = Vol gsp- (30)

Assume that Nyh, = b, — a,. Denote by ('), a difference derivative
“forfward”. We will give below a new definition of the difference covariant
derivative connected with definition (27) in the continuons case. From the
definition of the difference derivative with respect to Yo (“forward”) we
have

T.|. ?—W —P
(_"f)ya = ho = (“p—“? )ym
o

where T40¢(¥a) = (Yo £ ho). Using the formula of the differencing of the
product, we have

[

(W )ya = (Up)ya € + (Thatp) (€ )ye- (31)

If we want to obtain covariant components of the vector (tp)ye, then we
must multiply (31) by the vector &

(T4 €0) T = [(up)ya + (Tyaa) (T, @) (32)

The expression in the brackets is called the difference covariant derivative
(“forward”)
ha o _ s
Va Up = (Wym ?p) = (up)ya + (T+a“s)(?y¢.v ?p)- (33)
This “very good” definition keeps two main properities of the continuous
covariant derivatives (29), (30).
Here as an example we give the difference covariant derivative “forward”

of covariant components u, for curvilinear cylindrical coordinates system
ry ¢, z. Here w3 = u, u3 = v, u3 = w and
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€99 = Uy = € —.]léP_+_1‘;
22 = VU2 = W’_ragy o

v 10u v
212 = Vata + Vot =26 = 5ot Lh T

In the conformity of (33) we will have

hovjgr —v; 2 . hpujp +uj
[COS-Z“L“'?" — 381 _E.L],

+ha _
Va tuz = 5 hy THRY™2T 2

Tivd

+h +h —
AV 1”2+V2 uy =

Zig1 = O + 1 [cos@———-—uj+1 i ismﬁ____”iﬂ + v,-]
hy Ti+% 2 h, hs 2 2 )
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