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Forward seismic modeling based on
combination of finite Fourier transforms
with matrix decomposition method

G.V. Konyukh and B.G. Mikhailenko

This paper is the latest version of the numerical-analytical algorithm for solving
the forward seismic problem and migration. The main concept of the algorithm is
in splitting of 2D and 3D seismic problems to a series of 1D problems with the help
of the finite integral Fourier, Fourier-Bessel or Legendre transforms and with the
use of a 1D finite difference technique (see [1-3]). In this paper, instead of the finite
difference method with respect to one spatial coordinate and time, we propose to
use the finite difference approximation with respect to only the spatial coordinate
with a subsequent analytical solution to the obtained system of ordinary differential
equations with respect to time.

1. Statement of the problem

Let us illustrate the main stages of the method on the wave equation in the
Cartesian coordinate system

U 9 1 9%U |
92 T oa2 = v2(z, z) Of2 +6(z = 20)6(z — 20) £(2).- 1)

We consider vp(z, 2) to be a piecewise-continuous function of two coor-
dinates z, z. Here g, zy are the coordinates of the source simulated by the
right-hand side of equation (1), f(t) is a band-limited source function.

The problem is solved with zero initial data

oU
v R 0 (2)

t=0

y

and the boundary conditions on the free surface in the form

ou

5 =0. (3)

z=0

Assume that the function U(z,z,t) possesses sufficient smoothness for
using the subsequent transformations.
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2. Numerical-analytical method for solving
the problem

For solving problem (1)-(3) let us make use of the finite integral cosine-
Fourier transform

R(z,n,t) = ]U(z, z,t) cos (?) dz, (4)
0
with the inversion formula
' 1 2 & nnz
U(z,z,t) = ;R(z,[l, t)+ a Z R(z,n,t)cos (_a_) . (5)

n=1

The equation obtained after the transformation contains the term 8U/dz at
z=0and z =a.
Let us introduce new additional boundary conditions

ou| _ou
oz ,:0_6.2

and consider the wave field up to the time ¢t < T, where T is the minimal
time of propagation of the leading wave front from the reflecting surfaces
r =a, 2 =b. We are able to do it due to hyberbolicity of the problem. An-
other possibility to eliminate artificial reflections from the boundaries is to
introduce instead of boundary conditions (6) the absorbing boundary condi-
tions (see, for example [4]). Let us consider numerical-analytical algorithm
for two cases.

r=a

=0 (6)

=b

2.1. Velocity is a piecewise-continuous function only
of the coordinate z |

In this case after applying a finite integral cosine transform (4), (5) the new
boundary problem for R(z,n,t) is of the form

”#R 1 &°R

52 ~FR= 0 o7 + cos(knz0)é(z — 20) f(t), (7)
OR

FZ—m:O o z=b - 0’ (8)

dR
R|t=0 - -6_t =0 - 0, (9)
where
nw
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For solving the system of problems (7)—(9) let us make use of the finite
difference approximation with respect only to the spatial coordinate z with a
subsequent analytical solution to the obtained system of ordinary differential
equations with respect to time.

Let us introduce in the variable z the uniform grid
w={z=(-1)h; i=1,...,N+1, b= Nh}.

If vp(2) is continuous at the node z; € w, we assume v; = v,(z;), otherwise
v; = (Vi1 + vi—1)/2. The coordinate zp, which determines the location of a
source, is calculated by the formula

20 = (l - I)h.

Determination of the functions R;(n,t) on the lines z = z; reduces to solving
the Cauchy problem for the system of N linear differential second order
equations (see [5]). Write down the system in the vector form

d*Z

—5 +AZ = f()F, (10)
— dz .
| =0 - _(.{t_ t=0 =0. (11)

Note, that the original system has been reduced to the form of (10), (11)
by means of the preliminary replacement of the variables

Z(n,t) = DR(n,t), D= dia.g{i, é Q},

v vy’ oy
R(n,t) = (Ry(n, 1), ..., Rn(n,t))T,

providing the symmetry of the matrix A,. In equation (10) the vector F is
determined by the components

F;, =0, i=1,...,N, i#l
B = ——cos(kna:g)gw, l1#1;
F = —COS(knatu)%, 1=1.
Let us distinguish the dependence on the parameter n in the square

matrix A, by representing it as a sum of two constants for these medium
matrices

A, =A+k!B, (12)
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where B is a diagonal matrix
B = diag {vf, vi,..., v?v}

and A is a three-diagonal symmetric positive matrix

2v% S G i 56 0
. —V2v1v9 202 —vu3 e 0
A= ";5 . * . :
0 ~UN-2UN-1 20%_; —UN-1UN
0 . —UN_-1UN 2v%;

Using the orthonormal decomposition [6]:
An = Qdiag {)\y,..., AN} Q7! (13)
and replacing the variables:
Y(n,t) = Q" 1Z(n,t)

problems (10), (11) falls into N independent Cauchy problems for each com-
ponent Y; of the vector Y (n,t):

&, |

—F HAYi=g = FQu:f(t), (14)
ay; —

o= T o= o)

The solution to (14), (15) is written down in the form (see [5]):
‘ 1
Yi(t) = / i)y sin (Ve =) ar. (16)
0 ]

Depending on the type of the signal f(t) the values Y;(t) can be obtained
either analytically or numerically by calculating the integral in (16). Let,
for example,

(27l'fo(t - to))2
2

f(t) =exp (— -

) sin (27ffo(t - to)) ’

where o, fo, v are certain constants. Then for all 2¢g <t < T formula (16)
takes the form L
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Yi(t) ~ T o (\/A_i(t - to)) {eXp(— @rfo+ +_\/x‘)7]2)

4\/“_)‘1')(0 47 fo
_ exp( (z’-frftiL ;f;/*)v] )}

After we have found Y (n, ) it is sufficient to return to the original vari-
able

R(n,t) = D7'QY (n,t)
and then to find the solution U(z, z;,t) to the original problem by (5).

2.2. Velocity function is a piecewise-continuous function
of coordinates z, 2

Now we consider the case when the velocity v,(z, 2) is an arbitrary function
of two coordinates. After applying a finite integral cosine transform (4), (5)
to problem (1)-(3) the following equations results

C(I n, )[3 R zZ, l' t) _kiR(Z,I,t)]
=0
O*R(z,n,t
= ——(gtz + v2(zo, 2) cos(knz0)d(z — 20) f(t), 17
oR :
—5-; z=0 =R z=b . O’ (18)
RL:U = E t= = 01 (19)
where
1
;[U z, z) cos(knz) dz, 1=0,
c(lyn,z) = (20)
%f"p (z, 2) cos(knz) cos(kiz) dz, 1=1,2,...,M.
\ 0

The dimension of system (17) that is the number of terms (M) needed to
approximate the infinite sum is dependent on the Fourier spectrum width
of the signal’s time dependence f(t). Also, the additional convergence is
dependent on the smoothness of the function fi(z) = v2(z, 2) used for
calculation of the coefficients ¢(l, n, 2zx). We may improve decreasing these
coefficients by approximating fBi(z) by fifth-order spline function. For this

purpose the interval of integration from zero to a in integral (20) should
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be partitioned into L non-uniform parts. If for the approximation of the
function B(z) one uses fifth-order splines S(z), after integration by parts
in each interval, the expression for the coefficient ¢(p, zx) has the form

4
e, ) = i [Mysin P22 by in 2781]
M; - M;_ 1) ( PRTi—y pﬂxe)
— Ccos , 21
P“’eg(%—x:—l a a (21)

11 1 & 6 _ 26
c(0,z) = 120(MLxL Mz3) - 7202(1\4‘ - M;_ 1)-——

t—

] (22)

where
d*S(z)

dzt

We see that the coefficients c(p, z;) asymptotically decrease as p~©. The
first term of equation (21) is identically zero because z, = a and z; = 0.
The complexity of subsurface geometries in the direction of the coordinate
z does not cause additional computational difficulties as long as the interval
of integration between 0 and a is partitioned into a sufficiently large number
of non-uniform intervals L in which the function fx(z) is well approximated
by the spline function.
Problem (17)-(19) can be presented in the vector form

. M; =

p=Ilxn.

=T

R 0 = —_

T=c [é_; - K] R-6(z— 2)F, (23)
oR — '

-6_2 z=0 =k z=b B 0, (24)
- OR

RL:U =%l =" (25)

Here
R(z,t) = (R(ko, z,t), R(ky, 7,t), ..., R(km, 2, )T,
F = f(t)v}(zo, 2) (cos(kozo), cos(k1za), . . ., cos(karzo))”
K = diag {k%,k2,..., K} },
¢(0,0,2) ¢(1,0,2) ... ¢(M,0,z2)
co c(O.:l,z) c(l,:l,z) c(M,:l,z) ' (26)

c(O,J;M,z) c(l,j\d,z) C(M,.M,Z)
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As indicated above, for solving the system of equations (23)-(25) we
may use the finite difference approximation with respect to only the spatial
coordinate z. In this case the problem reduces to the form (10), (11) whose
algorithm of the solution is described above.

3. Application of the method for forward seismic
problem in the polar coordinate system

Let us illustrate the main stages of the method on the wave equation in the
polar coordinate system (r,¢):

U 19U 19U _ 1 U  4x
IR mi 0p* — vp(r, ) 08 + 76(r ~ o)l —ea) (6 (27)

on the half-space 0 < p <7, 0 < r < 00.
The problem is considered with zero initial data

U =0 (28)

=0 Ot t=0
and with the boundary conditions on the free surface in the form

v _o

= =0. 29
a(P @=0 a(P ( )

o=

We consider v,(r, @) to be a piecewise-continuous function of the two coor-
dinates r, ; (ro, @o) are the coordinates of the source.

For solving problem (27)-(29) let us make use of the finite integral cosine-
Fourier transform with respect to ¢:

Ra(r,t) = [ Ul 1) cos(np)dip (30)
J .
with the inversion formula
1 2.&
U("P: r t) = ;Rg(f‘, t) + ; ngl Rﬂ(r'l t) cos(mp). (31)

After applying transform (30), (31) a new boundary value problem is of
the form

2 T, ? !
3" [PAnlr) 12000 T ]t mry= B0 1 1

(32)

m=0

with initial data
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_ OR,(r 1) _
Bl =0 | =0 (33)

where

Ja(r,t) = 4Twu;‘f(r, t0)d(r — ro) cos(nyo) f(t),

( L
1 2
= [ vA(r,¢) cos(ng) d, m =0,
c(n,m,r) = { 01'
2 [ 2
;r-/up(r, ) cos(n) cos(myp) dp, m=1,2,..., M.
\ 1]

System (32), (33) is solved for n,m =0,1,..., M, where M is the num-
ber of terms of the row, needed to approximate the infinite sum (31) with
required accuracy.

We rewrite the problem in the vector form

R 8 19 1 |5 8(z—2) =
w-c[(w”f:a)-’f“ﬁp]ﬁ——;—“ (34)

Here C is a matrix of form (26), E is a unit matrix,

E(r,t) = (Ro(r, 1), Ra(r, 1), .., Bar(r, )",
F= 41rv§(ro, wo) f(t) (1, cos g, cos 2y, . . ., cos Mcpo)T,
P= diag{(), 1L,2%..., M}

For solving problem (34) we make use of the finite difference approxima-
tion with respect to only the spatial coordinate r. After that we reduce the
problem to form (10), (11) whose algorithm of solution is described above.

4. Construction of 2D depth migration
algorithms

In order to construct a migration algorithm we make use of the numerical-
analytical operator as we have done for the forward modeling. In this con-
nection we use the full wave equation, where velocity distributions are the
smoothed versions of the actual velocities to suppress secondary scattering
[7]. In the case of migration, however, we must take into consideration data
acquisition parameters such as trace interval, frequency content of the data
to be migrated, etc. ' -
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One of the parts of the depth migration is the reverse-time propagation of
the wave field recorded at the free surface backward in time. This procedure
is simulated by equation (1) with the right-hand side in the form

(z—20) > 8z — 2)fi(To— 1), (35)

j=0

where zg = 0, fj(To —t) are reverse seismic traces, Ty is the time trace
length, p is the number of traces.

The numerical-analytical algorithm which we used for the forward seis-
mic modeling without essential changes is applicable to the migration prob-
lem. After application to it the finite cosine transformation (4), (5) and
presenting it in the vector form, the migration problem differs from problem
(23)-(25) only in the vector

(Zcos(kng)f_, - t), Zcos (k1z;) f;(To — t), .

Jj=1 7=1

T
P
> cos(kn;) fi(To — t)) . (36)
i=1

Further, the migration problem can be written down in the closed form.
For example, for the case when the velocity v, depends only on the coordi-
nate z the solution is obtained in the following form:

To
Yi(n,To) = f(p,'(ﬂ, T)%sin (\/)T,-(Tg - T)) dr, (37)
0

where

o(n, )= ——Q1 .Z cos(knz;) f(To — 7)-

=1

Integral (37) is numerically calculated.

In order to calculate the displacement U(z, z,t = To) and to construct a
migration seismic section we make use of formula (5). In the case when the
velocity is an arbitrary function of two coordinates we also obtain a solution
similar to (37). The additional convergence of the migration algorithm is
dependent on smoothness of the function fi(z) = vZ(z, 2) in integral (20).
In this case the function B;(z) is expanded in a Fourier series. We may take
a small number of terms in the Fourier series if the function Bx(z) is slowly
varying along the coordinate-z. -
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5. Conclusion

Let us dwell on the advantages of the given algorithm. The algorithm for
seismic forward modeling allows the calculation of a wave field at any mo-
ment of time without recurrent recalculation procedure from one time level
to another as it takes place when we use the finite difference approximation
with respect to time. In addition, this approach makes it possible to obtain
solutions to many sources without essential computer costs, because we need
to transform the matrix A, to the diagonal form only one time for all the
sources.

The above-presented migration algorithm is based on the full wave equa-
tion, where velocity distributions are the smoothed versions of the actual
velocities to suppress secondary scattering. In this case the algorithm pos-
sesses super-convergence.

At present time, this algorithm without essential changes has been de-
veloped for elastic inhomogeneous media.
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