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Integral Laguerre transform as applied
to forward seismic modeling

G.V. Konyukh, B.G. Mikhailenko, A.A. Mikhailov

The paper presents some efficient algorithms based on the application of the
integral Laguerre transforms for approximation of temporal derivatives. Some spe-
cific features of employing this algorithm for the first and the second order equations
with respect to time are considered. A few examples of calculation of seismic fields
for the layered medium model with drastically contrast elastic parameters are pre-
sented.

Introduction

The finite difference frequency-domain modeling for the generation of syn-
thetic seismograms has achieved considerable success and is currently an
active field of research [1-3]. It is well-known that simulation of seismic
fields in the time domain is widely used as it is sufficiently accurate and easy
to realize. As for the frequency domain modeling, it has some advantages
over the time domain simulation when, for example, the complete prestack
seismic response is required for a multiple-source experiment. The space
frequency domain modeling does not have any stability problem, while the
accuracy of the simulation based on the space-time domains is determined
by the stability limit dependent on the greatest velocity in the model. Also,
it is possible to employ a function of frequency as the coefficient of damping,
therefore simulation of the damping effects appears more flexible. Unfortu-
nately, after discretization of the frequency-domain equations we arrive at
the large matrix equations, and their solution for many temporal frequencies
is a time-consuming task.

Recently, we have proposed the new approach based on applying the
integral Laguerre transform along the time coordinate instead of the integral
Fourier transform [4, 5]. Applying this approach, we obtain an analogue of
the frequency-domain forward modeling, where instead of the frequency w
we have the number m — the degree of the Laguerre polynomials. After
using high-order finite differences or the spectral technique, the resulting
linear system has a sparse matrix independent of m, only the right-hand
side of the system has the recurrent dependence on the parameter m. In this
case, we can use fast methods such as the Cholesky method for solving the
obtained system with a great number of the right-hand sides. As this takes
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place, the matrix is only once transformed as compared to the frequency-
domain forward modeling. In this paper, our approach is applied to the
elastic wave equations of the first order system for the velocity and stresses
as well as to the acoustic wave equation of the second order with a variable
velocity. Some examples of the calculation of the wave fields for drastically
contrast, in terms of elastic parameters, media are presented.

1. The integral Laguerre transform

Let us introduce the integral Laguerre transform
o0
Fn= [ FO()"15(ht) d(ht) 1)
0

with the inversion formula

5 !
— (h1)o/2 L
F(t) = (ht) 7:{40 Tt a)!lem(ht), (2)
where [ (ht) are the orthonormal Laguerre functions:
° (m+ a)!
f 12, (IS (ht) dt = G- 2. 3)
0 !

The Laguerre functions [%(ht) are expressed by the classical Laguerre
polynomials L& (ht) [6]. We select the parameter a to be integer and posi-
tive, then

12 (ht) = (ht)*/2e /212 (ht). (4)

In formulas (1)-(4), m = 0,1,2,... . In addition, the new shift pa-
rameter h > 0 is introduced, whose features and application are discussed
below. Further, for the substantiation of validity of application of the in-
tegral transform (1), (2) to seismic problems, we assume all the functions
to be, at least, piecewise-continuous and to have some limitations on their
behaviour in 0 and oo, see [6].

Hereafter, we will need formulas of the first and the second derivatives
of the Laguerre polynomials in the variable ¢. Making use of the definition
of the Laguerre polynomials it is easy to obtain the following formulas:

m—1
o 15(ht) = —h S LE(st), (5)
t k=0
62 m—2
s Lan(ht) = h? > (m —k — 1)L§(ht). (6)

k=0
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2. Application of the integral Laguerre
transform for the 2D vertically heterogeneous
elastic problem

Let us consider the application of the integral Laguerre transform for the
approximation of temporal derivatives. As for the approximation of spatial
derivatives, one can use the finite difference method of the high order accu-
racy, the spectral technique or their combination [7-9]. The latter approach
will be used in the present paper.

Seismic waves propagation in an elastic medium in the Cartesian system
of the coordinates (z, z) for velocities and stresses may be written down as
the following system of equations:

Buz _ 1 a'rm aTmz
3t—p(%+~&)+ﬂw@ﬂm

Ou, 1/012, O1,,
(G + ) + R are,

ot P
or. Ou, ou
—_z=Z _ z 7
5 ()\+2p)3w +A55 (7)
0T, _ Ou, Ou,

r = A+ TGS+ A5,
0Tz, _ (E)uﬂc + é’lii)

ot  H\8z Tz )

Here, (uz,u,) are the velocity vector components, (Tzzs T2z, Tzz) are the
stress tensor components, p is the medium density, A and p are the Lame
parameters. In these equations, F,, F, are the components of the body
forces F'(m,z) = Fy€; + Fy€;. Depending on the type of a source, these
components will have the following values:

1) F3 =0, F, = §(z — z0)(z — 29) for the vertical type source;

dé(z — z) 94(z — z)

2) F, = P

6(z — 2), F, = §(z — =)
T
type source.

for the explosive

In the above formulas, (zg,2) are the coordinates of the source and f(t)
represents the time variation of the source.
The problem is solved with zero initial data:

u’-’:lt:(] = u'2|t:0 = T:t:zlg:() = Tzzltzo = Ta’zlt:O = 0. (8)

Consider this solution on the half-space z > 0 with the boundary condi-
tions on the free surface defined in the form:
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Tﬂ?z(mv z, t)|z=0 = Tzz(m, z, t)lz:[, =0. (g)

Let us assume the medium to be vertically heterogeneous, i.e., p(z), A(2),
and p(z) are piecewise-continuous functions of the coordinate z. Assume,
also, that the functions ug(z, z,t), u,(z,2,t), Tee(®, 2,t), 72.(z,2,t), and
Tsz(, z,t) are sufficiently smooth to be applied to subsequent transforma-
tions.

Let us make use of the finite integral cosine-sine Fourier transforms for
each component of system (7):

iz (n, 2,t) uz(zx, z,t) sin(knz)

Uz(n,z,t) o | uz(z,2,t) cos(kpz)

Toe(m, 2, 1) =[ Tez(, 2, t) cos(knz) p de, (10)
Tuz(ny 2, 1) 0 | 7,.(x,2,t) cos(k,z) :

Trz(n,y 2, 1) T22(T, 2, ) sin(knz)

wherek,, = nw/a. The respective inverse formulas are of the form:

uz(z, z,1) tig(n, z,t) sin(knz)
uz(z,2,t) o0 z(n z,t) cos(kn)
Toe(Z,2,t) 3 = Z dp { Tez(n, z,t) cos(knz) 3, (11)
T2z(Z, 2, 1) n=0 'rzz(n z,t) cos(kn)
Tez (2, 2, 1) Tez(m, 2,t) sin(kpz)

where

4 1/m, forn =0,
"\ 2/w, forn>1.

After applying the transformations to (7)-(9), the obtained system will
contain the terms

Ou,
Ug | £=0 5z

r=a

Lo
z=0 ! aw
z=a

OTee
z=0"  Jg
T=a

=0 "

Tr=a

z—0' Tzz

T=a

Introduce the supplementary boundary conditions assuming these terms on
the boundaries z = 0 and z = a be equal to zero. We will consider the wave
field up to the moment ¢ < T, where T is the minimal time of propagation
of the leading wave front up to the reflecting surfaces ¢ = 0, z = a. It can
be done due to hyperbolicity of our problem.
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As a result of using (10), (11), problem (7)-(9) takes the form:
aﬂ'.’c fzz -
ot ;( B knTzz) + Fz(n, 2) f(t),
ou, 07,
ot p( 92 +kn7'zz) +Fz(n12)f(t)’
OTss o1,
_ . 12
ot oz n(A + 2p)iz, (12)
afzz _ a-
o - e
ot~ F\g; ~ %)

Here i
Fz(n,z) =/ Fy(z, z) sin(k,z) dz,
0

F,(n,2) = /Oan(a:,z) cos(knz) dz.

The system of equations (12) is solved at zero initial data and the fol-
lowing boundary conditions:

Tax(:2,1) = Tpz(n, 2, %)

= 0. (13)

z=0 z2=0

Now, to problem (12), (13), we apply the integral Laguerre transforms along
the temporal variable ¢ of the form:

% (n,z) Ug(n, 2,t)
ﬂ;"'(n’z) 00 ﬁz(n,zat)
M (n,z) b = / Too(n, 2,t) b (hE) /2% (ht) d(ht),  (14)
‘T‘z";(n,z) 9 'T'zz(n;z’t)
T (n;2) Toe (M 2,1)

with the respective inversion formulas:

fig(n,2,1) tg'(n, z)
ﬁz(n’z)t) 0 m! m( )
'rmgn 2 3 = (ht)a/2 Z m ngn z; 12 (ht). (15)
Tzz( N, 2 m=0 : TN, 2
'T'zz(n, Z,t) ( )

Based on inversion formulas (15), it is obvious that the value of the param-
eter o (the order of the Laguerre functions) should be either one or greater
than one to satisfy the initial conditions. The value of the parameter o
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affects the accuracy of the numerical implementation of the algorithm. We
will talk about it in more detail in Section 5.

The application of (14), (15) results in the system of equations (12) of
the following form:

_;;w( iz’ = 1" (n, 2),

’2‘ A (A + 2wy = £ (n, 2),

i :‘—:; 86; ~ kT ) = £7 ), (16)
% _% 63; + k7" )= 7 (n,2),

where

1 n z) —h Z Tzzs

_’J“‘O

fz' n,z) =—hz'rm,

f:;n_l(n’ z) = —h Z ﬁi + Fz(n,2)f™, (17)
j=0
m=—1

P Yn,z) = —h Y @ + Fy(n,2)f™
j—O

f :.4;2 Trz

- fo * £(8)(ht) 7212, (ht)d(ht),

and the boundary conditions are the following:
n,2)| =72 _ =0 (18)

System (16) can be written down in the vector form:

V(z,n,m) + A(z,n)ﬁ(z,n,m) . ﬁ(z,n,m), (19)

2| S
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where
7z (2,n) " Hz,n)
Tz2(2,n) 77+ (zm)
l.‘;'(‘21""3:W;!') = ﬁ;n(z, n) 3 ﬁ(zan’m - 1) = f.‘;n_l(z:n) )
iy (z,n) 1(z,n)
T2z(2,1) 7 Hz,n)
0 0 kA —(A+2 )i 0
( , W
0
0 0 —-kn(A + 2#«) “AE'; 0
kn 14
A(z,n) = 0 ? 0 0 —;a . (20)
10 kn,
h;a 0 0 0 -—F~,-
a
\ 0 0 R pkn 0 )

As is seen, after application of the finite integral cosine-sine Fourier and
Laguerre transforms the solution of the original problem (7)-(9) is reduced
to the solution of the 1D problems (19) with respect to the coordinate z. In
order to solve these problems, let us use the finite difference approximation
of the fourth order accuracy scheme [10] on the staggered-grid space:

w={zn=iAz; i=0,...,K},
wl/z = {z‘i+1/2 = (‘1+05)A2, 2"-—=0,,K—1}

The values of the components 7%(n, z), 77 (n, z), and @™(n, z) are de-
fined on the grid w, and the values of the components 7™(n, z) and a7 (n, z)

are defined on the grid w; /5. Let us introduce the vector

-

W(n,m) = (?g(n,m), T_/;l(n,m), ey ﬁK(n,m))T,

where
ﬁz(zi—1/2)
T22(20) fzz(zi—1/2)
Vo = | Faxlz0) |, Vi = | %oulz) , i=1,... K.
Uz (20) Tex(2i)

Uy (2;)
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As a result, our problem reduces to the system of linear algebraic equa-
tions formally written down in the vector form

h N -
(AA(n) + 5E)W(n,m) = Fa(n,m - 1), (21)
where
<5 T - T
Fa(n,m—1) = (Fo,Fl,...,FK) ,
1 Hzicaj20m)
7" (z0,m) 7 (zi1/2:m)
Fo=| o Yaom) |, Fi=| (200 ; §=TK.
f3 —l(zﬂ’n) f4 —l(zi’n)
f5 _l(zian)

Here W (m, n) is the solution vector, Aa(n) is a band matrix of the system
independent of the parameter m, Aa(n) is the finite difference approxima-
tion of the operator A(z,n) (20), obtained after approximation of the spatial
derivatives with respect to z with the fourth order of accuracy on the dif-
ference grids w, wy/s. The right-hand side of the system Fa(n,m — 1) has
the recurrent dependence on the parameter m. It gives us the possibility to
use fast methods, for example, the Cholesky method, for solving the linear
system with a great number of the right-hand sides. Thus, the solution of
the original problem (7)—(9) can be calculated from the solution of the lin-
ear algebraic system of equations (21) with a subsequent application of the
inversion formulas (15) and (11).

Note, that selection of a sequence of components of the vector V(z, n,m)
is defined by the condition of minimization of the number of diagonals of
the matrix Aa(n). In addition, the components of V(z,n,m) are selected
in such a way that the terms of system (16), having the parameter h/2 as
a co-factor, should be arranged on the main diagonal of the matrix AA(n).
By varying h, this choice makes it possible to essentially affect the condition
number of the matrix Aa(n).

3. Application of the integral Laguerre
transform for the second order wave equation

Let us consider the heterogeneous wave equation:

0%u Bz_u_ 1 %

5’;2‘ 922 ;:f,—(a:,—z)ﬁt? =6(z — z0)d(z — 20) f(2). (22)
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We search for its solution satisfying zero initial data

Ou
ul,_o =0, — =0 23
It_o 3t =0 ( )
and the boundary conditions on the free surface:
Ou
== =0. 2
Bz z=0 0 ( 4)

We assume vy(z,2) to be a piecewise-continuous function of two vari-
ables. The source with the coordinates g, 2o is simulated by the right-hand
side of equation (22), where f(t) represents the time variation of the source.

For solving problem (22)-(24), let us make use of the finite integral cosine
Fourier transform

a
R(z#,t) = / U(z,z,t)cos ?dm, (25)
0
with the inversion formula
U(z,z,t) 1R( 0,t) + . iR(z t) cos i (26)
] =i Z,U, - 1y - -
! a a a

n=1

: ; . ; oUu
The equation obtained after the transformation contains the terms ——

T lz=0
and g—: . Let us introduce the new additional boundary conditions
T=a
ou U
0z ;=g Oz |y,

and consider the wave field up to the time ¢ < T, where T is the minimal
time of propagation of the leading wave front up to the reflecting surfaces
T =a,z=h. ‘

After applying the finite integral cosine transform (25), (26) to problem
(22)-(24), we arrive at the following equations:

M 2 2
> ety )|t - kRG] = TEERY g0, s,
=0
OR OR
E - - Rlz:b - 0’ R't:o S W =0 - O) (28)
where
k= E, ®(z,n) = —vf,(mo,z) cos(knzo)d(z — 2p),
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—l—f vﬁ(:c,z) cos(knz) dz, =0,
c(lyn,z) = mJo

a
—/ Uf,(:n,z)cos(kn:z:)cos(k;w)da:, [=12,...,M.
™ Jo

The dimension of system (27), i.e., the number of the terms (M) needed
to approximate the infinite sum, is dependent on the Fourier spectrum width
of the wavelet f(t). Problem (27), (28) can be presented in the vector form

82R(z,t - "

TRED | AR Y = ()10, (29)
OR 5 . OR

= Rl=0, Hlo=T| =0 (30

Here .
R(z,t) = (R(2,0,t),R(z,1,t),..., R(z, M,t))T,

3(2) = (8(2,0), 8(z,1),...,8(z, M))".
The matrix-operator A(z) is represented as
A(z) = C(2)K(2), (31)

where the matrix-operators C(z) and K (z) are of the form:

K(z) = diag(kg—%,kf—g;;,..., g_%)
c(0,0,2) ¢(1,0,2) ... ¢(M,0,2)

Clz) = e(0,1,2) ¢(1,1,2) ... e(M,1,2)
s e

In order for the spatial derivative be approximated with respect to the
coordinate z, we can make use of the finite differences of a high order ac-
curacy. Here, for the sake of simplicity, we are going to employ the finite
difference approximation of the second order of accuracy.

Let us introduce in the variable z the uniform difference grid

w={z=>G-1)Az i=1,...,N+1; b=NAz}

After discretization, problem (29), (30) reduces to the Cauchy problem for
the system of the linear differential second order equations. In the vector
form, it is as follows:
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822 (¢ 5 ¥

) v 4aZ(0) = Ba1(0) (32)
- dZ
Zlyg = &l = 0, (33)

where Ap is a positive block three-diagonal symmetric matrix, A, is a finite
difference approximation of the operator A from (31). Here

Z(t) = (R‘l(t): “re :EN(t))T! q_;ﬂ- = (é('zﬂ): vy i(zN))T'

Let us apply to problem (32), (33) the integral Laguerre transform along
the variable ¢:

Glm) = [~ (ht)/215(ht) Z (1) d(h), (34)
with the inversion formula
Z(t) = (ht)*/? 2 G ay Qi h). (35)

As is seen from formula (35), the value of the parameter « should be
either two or greater to satisfy the initial conditions (33). We obtain the
problem for the coefficients G(m):

2
% 3m) + 4aG(m) = B(m - 1), (36)
dQ(m -
e I CTIY (37)
where m_t
U(m~1) = fuda+ 1 Y (m — 1)),
j=0

fm = f " (ht)=o212 (ht) £ (2) d(h).
0

We come to a system of the linear algebraic equations which is written
down in the compact form:

2
(AA + %E) Q(m) = §(m - 1). (38)

The resulting linear algebraic system of equations has a symmetric, pos-
itive block three-diagonal matrix. Like in Section 2, this matrix is indepen-
dent of number m and the right-hand side of the system has the recurrent
dependence on this parameter. The solution of the original problem (22)-
(24) can be calculated from the solution of the linear algebraic system of
equations (38) with a subsequent application of the inversion formulas (26)
and (35).
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4. Application of the integral Laguerre
transform for the 3D axially-symmetric
vertically-heterogeneous elastic problem

Let us consider the application of the integral Laguerre transform on an
example of solution of the first order elastic equations in the cylindrical co-
ordinates (r, 8, z) for the 3D axially-symmetric, vertical heterogeneous half-
space z > 0. The selected physical model can be described by the following
system of equations:

ou, B é‘*r_,. + Oy Tr—To
P ot =~ or 0z r
B'U.z 8‘?}; 8Tz Trz

pat:&r Oz !

or, Ou, Ou, ur
or, Ou, Ju, Uy
—5?_()\+2y)az +A(8’J"+ ),
Oorg Ur (3uz 8u,)
ot (A +24) r +A Oz * or )’
0Tz (Bu,. + Suz)
ot P\ 8z or
with zero initial data
Urlymg = Uzli—g = Trli=o = Tzlt=0 = Toli=0 = Tral=o = 0 (40)
and the boundary conditions
TT'Ziz:O = 0! Tzlz:() = F('r)f(t)' (41)

In equations (39)—(41), the elastic constants A(z), p(z) and the medium
density p(z) are arbitrary piecewise-continuous functions of the variable z;
oij denotes a component of the symmetric stress tensor, u; denotes a veloc-
ity component, f(t) represents the time variation of the source, F(r) is a
function of distribution of the source on the plane z = 0. We can choose
F(r) in the form
n2
_ 0

r) =
(1 + ndr2)*/?

to be suitable to simulate a point source when ng — oo.
Let us make use of the representation of the solution to (39)-(41) as a
combination of the Fourier-Bessel series [8]:
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= aS i) e,
o= s S (e

o = %g[k Wi (kn, 2, t) +W4(kmzaf)][_‘]‘%k:5')]_z -
=35§ o ’[Jjo;(k_ 3 il 9

where Jy and J1 are the Bessel functions of the first kind and k,, are the
roots of the transcendental equation Ji (kna) = 0. We choose a parameter a
to be sufficiently large to consider the wave field up to the time t < T, where
T is the minimal propagation time of the leading wave from the reflecting
surface r = a.

After applying (42)-(45) to problem (39)-(41), we arrive at the following
system of equations:

oWy 6Wz

8t | 0z — kaWs = kWi,
BWG oW,
"5t = 5z W
% = (A+2u )% + Ak, Ws,
ow, oW kT (46)
ot = H 9z HEnWe,
OW,
5 = KW,
oW, OWs
ot = 2oy TS,
with the initial data
Wil,eg =0, s=1,...,86, (47)
and the boundary conditions .
1 k
Wal.co =0, Wil.y = 3 exp(22) 100 (49)

Now we apply to problem (46)—(48) the integral Laguerre transform with
respect to the time coordinate [4]:
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_ )
W (kn,2) = [ Walkn, 2, O)(be) ()R, 8 =1,...,6, (49
0
with the inverse formulas

Wo(kn, z,t) = (ht)*/? Z (m+a W (kn, z)l5 (ht), s=1,...,6. (50)

We arrive at the following system of equations:

h.- m-l _ . 10WP kE - K -
W RS W = - = - W - =W
25 jz:% 5 p 0z P 3 P 4
b S 1OW R
= ] ==L 4+ 2w,
5Ws +FJ§JW5 .—r + o Wi
m~1 T
oWy .
dWI +hY Wi = (A+2p)—azﬁ— + Ak, Wi,
j=0
h = oWy (1)
WP+ S Wi = p—p — pkaWET,
2 pr 0z
h m-1 B}
—W’“ +h Y Wi = 2uW",
j=0
m—1 T
oW _
5W4 +h,EOWJ = A, + N, W,
with the boundary conditions
- 1 k,
Wilog =0, Wi, =5 exp (BE) . (52)

where

fm= [ £E)BE)05 (he) (k)
0

It should be noted that we must select an integer parameter a > 1 to satisfy
the initial data (47).

Problem (51), (52) is reduced to a system of the linear algebraic equations
with the help of the finite difference approximation with respect to the
coordinate z by analogy with Section 2 and Section 3. As a result, after
finding W™(kn,z), s = 1,...,6, it is sufficient to substitute them in the
inverse formulas (42)-(45) and (50) for obtaining the solution of the original
problem (39)-(41).
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5. Some aspects of convergence of the method.
Examples of calculation of seismic fields

For the solution of systems (21), (38), and (51) we make use of fast methods
of solution of a linear algebraic system of equations with a great number of
the right-hand sides, for example, the Cholesky method. In this case, the
matrix of the system is only once transformed for all the right-hand sides,
due to its independence of number m. The right-hand side of the system has
a recurrent dependence on the parameter m. Note, that if we take advantage
of the Fourier transform along the temporal coordinate, we will obtain a ma-
trix, dependent on the temporal frequency. It would considerably increase
our computer costs. Thus, we can consider the spectral Laguerre method
for approximation of temporal derivatives as an alternative to the Fourier
method.

The inversion formulas of the analytical finite integral cosine-sine Fourier
and Laguerre transforms contain the sums with an infinite number of terms.
Therefore, when carrying out numerical calculations one should know the
sufficient number of terms in a series to be summed up in order to obtain a
solution with the desired accuracy. Thus, the number of terms in a series,
necessary for performing the finite integral cosine-sine Fourier transform
depends on the spatial wavelength in a medium, which in turn depends
on the spectrum of a temporal signal f(¢) in the source. According to
the Laguerre transform the number of harmonics needed for the waveform
reconstruction of the solution, depends both on f(¢) and the last moment
of time before which the solution can be reconstructed. In the latter case, it
is possible to define the number of harmonics in the following manner. At
the first step, for the function f(¢) we find the expansion coefficients

= [ £ B3, ) (), (53)
0

where I, are the Laguerre functions defined in Section 1. Using the analyt-
ical formula of solution of the 1D acoustic problem [4], it appears possible
to find the expansion coefficients (according to Laguerre) of the function
J(t+ Tp) in the following form:

fn= Z fm n—m(RT0) — Z fm n—m—1(hT0). (54)

Here LY, are the orthonormal Laguerre polynomials of zero order. By an-
alyzing the convergence of these coefficients one can define the necessary
number of harmonics for the waveform reconstruction at the fixed time To.
The function diagram of the decomposition coefficients f, = f(n) for f (t)
of the form (56) for various times T} is shown in Figure 1 (h = 20, o = 2).
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Figure 1. The function diagram of the decomposition coefficients f, = f(n) for
the function f(¢ + T) for To = 5 s (the upper) and 10 s (the lower)

As is seen from the figure, the higher is the arrival time of a signal, the more
shifted to the right are the coefficients f,,. Hence, if are sufficient number
of harmonics for a certain T have been found, the number of harmonics for
all the lesser moments of the time 7} will be automatically sufficient.

Let us analyze the effect of the Laguerre parameters a and h on the
accuracy of calculation when solving our problems. As is evident from Sec-
tions 2-4, the solutions of the original problems reduce to systems of the
linear algebraic equations. It is a well-known fact that the accuracy of nu-
merical algorithms for solution of a system of the linear algebraic equations is
essentially dependent on conditioning of a matrix of the system. One should
keep in mind that the decrease of conditioning considerably improves the
solution accuracy. The experience gained in solving seismic problems in-
dicates to the fact that the conditioning of the resulted system is strongly
affected by the physical characteristics of the model medium. The condition-
ing becomes worse, especially, in the case of the drastically contrast media.
However, in the proposed algorithm, the conditioning of the system of equa-
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tions (21), (38), and (51) after approximation of the spatial derivatives with
respect to z is to a greater extent dependent on the Laguerre parameter
h. This effect is attained because of the location of the parameter h/2 on
the diagonal of the matrix A4,,. The numerical results obtained show that
even for models of the drastically contrast media, the conditioning of the
matrix of our algorithm does not exceed one order and tends to unity with
increasing h.

Now let us dwell on the role of the parameter a in the numerical im-
plementation of the proposed method. Based on the following asymptotic
expression for the Laguerre function

I(ht) = \/;(mt)‘l/‘*na/’—l/4 [cos (2\/n—ht _{at D) - 1)") +o(\/iﬁ)], (55)

ht > 0, one can see that the expansion components in the inversion formulas
(15), (35) and (50) have the asymptotics (ht)*/2-1/4 in the variable ¢ at
n — 0o0. As values of the components of the field are limited for any moment
of time, one can arrive at the conclusion that for all @ > 1 /2, the greater
the value of , the greater the damping.

Having fixed the parameter h, we can increase the parameter . With
increasing this parameter up to a certain value, the accuracy of computation
increases as well. However, in this case some problems connected with a lim-
ited machine accuracy may arise. This difficulty can be overcome by using
the computation with double precision and, or some other computational
technique. For example, when computing an exponent with a large index, it
seems reasonable to present it as a number of exponents with smaller indices,
and so on. Thus, depending on the selected wavelet f (t) and the duration
of the time interval on which we want to calculate a synthetic seismogram,
it is possible to determine the optimal parameters A and a.

The most serious error of the calculations is connected with approxi-
mation of derivatives with respect to the variable z. In order to diminish
such an error, it seems reasonable to use a higher order approximation when
solving the elastic problems discussed above. In addition, it would be appro-
priate to introduce non-regular difference grids with allowance for specific
features of the drastically contrast layers of a medium. Thus, for each con-
crete model, the optimal discretization step depends both on smoothness of
solution of the field under reconstruction and on the physical parameters of
the proposed model.

The results of numerical calculations of problem (7)—(9) for the model of
the medium with drastically contrast interfaces are presented in Figure 2.
This model contains three homogeneous isotropic layers: air-water-solid.
The figures represent snapshots of U, vector component of the wave field
for the times T' = 3, 6, and 9 s (see Figure 2, the upper) and 7' = 20 s
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(see Figure 2, the lower). Physical parameters of this medium model are the
following:

1) the upper layer (air) - V, = 0.336 km/s, V; = 0 km/s, p = 0.001 g/cm?;
2) the middle layer (water) — V, = 1.5 km/s, V, = 0 km/s, p = 1 g/cm?;
3) the lower layer (solid) — V, = 5 km/s, V; = 3 km/s, p = 2.5 g/cm?.

The layers interfaces are shown by the solid horizontal line. Depth z of
the upper and the lower boundaries is 10 and 15 km, respectively. Location
of a source of the explosive type is defined by the coordinate points zo =
0 km, zp = 25 km. We define the time variation of the source f(t) as function
of the form:

(2mfo(t — to))?

(0 = exp TR

| sin@nso(e - o)), (56)
where vy =4, fo =1, tp =1.5s.

Figures 3 present the results of calculation of the wave field for problem
(39)-(41). This model contains two homogeneous isotropic layers. Physical
parameters of this medium model are the following:

1) the upper layer - V, = 1.5 km/s, V, =1 km/s, p = 1 g/cm?;
2) the lower layer — V, = 3 km/s, V, = 2 km/s, p = 2 g/cm®.

The upper field represents a snapshot of the cross-section of the wave field
in the plane (r, z) at ¢ = const. The distribution of values of the component
u, for T = 10 s is shown. The lower graph represents seismotraces for the
displacement vector component u, on the free surface for the given medium
model. Location of a source of the vertical force type is defined by the
coordinate points zyp = 0 km, zg = 0 km.

Analysis of the results obtained shows a good stability of the proposed
algorithms even for the drastically contrast models of media. In this case,
an error of the numerical calculation of the wave field does not exceed 1%
at distances of 100 wavelengths.

Conclusion

We have presented the new approach based on the integral Laguerre trans-
forms for approximations of temporal derivatives for the time dependent
problems.

The technique can be applied to a number of methods including the finite
difference method, the finite element method or the spectral method. The
approach presents an alternative to the frequency domain modeling based
on the integral Fourier transforms.
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The method discussed here can be applied for the calculation of spatial
derivatives in the first order equations. Its application would make it possible
to automatically satisfy the far-field conditions. In this case, there is no need
to introduce the absorbing boundary conditions.

At present, this approach, based on the integral Laguerre transforms,
has been developed for the modeling of the attenuation effects in the elastic
medium. In this case, the difficulties connected with representation of inte-
gral terms in the time-dependent elastic wave equation are easily overcome.
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