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Parallel implementation of the algorithm
for solving a problem of shock-wave accumulation

in liquids∗

V.D. Korneev, V.A. Vshivkov, G.G. Lazareva, V.K. Kedrinskii

Abstract. The new parallel algorithm has been developed and implemented for
solving the axially symmetric problem of the interaction of a plane shock wave with
a free bubble system (cluster) resulting in the formation of a stationary oscillat-
ing shock wave. The important characteristics of the problem in question, such as
acceleration, effectiveness, the influence of inhomogeneities on the time of calcula-
tion were experimentally obtained, thus enabling evaluating of the quality of this
algorithm as well as possibilities of obtaining good results. With the use of the
parallel algorithm discussed, the dynamics of the pressure fields in a distant zone of
a cluster is investigated, including the pressure field of the shock wave radiated by
a bubble cluster. It is fairly difficult–– during a reasonable time–– to obtain results
of such an investigation on one computer due to a large size of the problem under
consideration.

1. Introduction

Generation of pressure pulses in liquids and gases has been the subject of
ongoing research for many years. This work resulted in the development
of various pressure generators and shock-wave accumulation methods. Re-
search efforts were focused on the exploration of media in which the energy
transferred by relatively weak pulsed loading can be absorbed, concentrated
in a local region, and remitted in a pulse of a substantially higher ampli-
tude. In the 1990s, the first publications appeared on the basic principles
of hydroacoustic analogues of laser systems, such as SASER (shock ampli-
fication by systems with energy release) or SABSER (shock amplification
by bubbly systems with energy release). In [1], the model developed by
Iordanskii, Kogarko, and van Wijngaarden was used in numerical studies
to show that interaction between a plane shock wave and a bubble cluster
gives rise to a shock wave with a pressure gradient tangential to its curved
front. By focusing such a wave, its amplitude can be increased by one or
two orders of magnitude. Another example of waves in an axially symmetric
geometry are the processes focusing in the interaction between a plane shock
wave and a toroidal bubble cluster. The results of numerical study of the
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near-axis wave structure was presented for a focusing shock wave emitted
by a bubble cluster in [2]. It was shown that the wave reflected from the
axis has an irregular structure. The Mach disk developing on the axis has a
core of finite thickness with a non-uniform radial pressure distribution. The
evolution of the Mach-disk kernel was analyzed, and the maximum pressure
in the core was computed as a function of the gas volume fraction in the
cluster. The effect of geometric parameters of the toroidal bubble cloud on
the cumulative effect was examined.

This paper proposes the new parallel algorithm of the axially symmetric
problem of the interaction of the plane shock wave with a free bubble system
(the toroidal cluster) resulting in the formation in the liquid of a stationary
oscillating shock wave.

The new approach to parallelization of the algorithm of the given prob-
lem is considered. The basic characteristics of the parallel algorithm, ob-
tained for different sizes of a computer system, different sizes of a bubble
cluster and different sizes of a problem are presented. The corresponding
graphs of the numerical experiments are plotted. The results of solution
to a concrete problem, obtained on the supercomputer system MVS100 are
presented. The new results when solving the problem of the interaction of
the plane shock wave with a toroidal cluster have been obtained. Analysis
of the wave field structure in a distant zone of a cluster for three sets of geo-
metrical parameters of the toroidal bubble cluster was made. The improved
values of the pressure dynamics when the Mach disk is propagating along
the axis for large time intervals have been obtained.

2. Statement of the problem and governing equations

We consider the shock wave generated by piston motion at the end of a shock
tube of radius rst filled with a liquid at the moment t = 0. The shock tube
contains a toroidal bubble cluster whose center is located on the shock-tube
axis (denoted by z) at a distance lcl from its left boundary. The plane of

Figure 1. Toroidal bubble cluster: the
hatched area is the toric section; z is the
symmetry axis

the base circle of the torus (here-
inafter called the toric plane),
which has a radius Rtor (Rtor <
rst), is perpendicular to the shock-
tube axis. The cross-sectional ra-
dius of the torus is Rcirc (Figure 1).
The initial volume fraction of the
gas phase in the cluster is denoted
by k0. All gas bubbles have equal
radii Rb, their distribution over a
cluster being uniform. At t > 0,
the shock wave propagates along
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the positive axis z, interacts with a toroidal bubble cloud, bypassing around
it, and is refracted as it encounters the cluster. The interaction between the
refracted wave and the bubble cloud results in its focusing inside the cluster,
and its intensity increases to an extent determined by the cluster parameters
and the cross-sectional radius Rcirc of the torus. The shock wave amplified
by interaction with the cluster propagates further into the ambient liquid.

The focusing of the refracted wave by the cluster was computed using
a modified Iordanskii–Kogarko–van Wijngaarden model [1], based on the
continuity and momentum equations written down for the average pressure
p, density ρ, and velocity ~u :
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where ρ0 is an unperturbed liquid density, c0 is the speed of sound in a
liquid, and ρ is the density of the bubble liquid normalized to ρ0. It is
obvious that system (1) is not closed: the Tait equation of state for the
liquid phase contains the volume fraction k of gas in the cluster, which is
expressed in terms of the dynamic variable β = R/R0 (a relative bubble
radius).

In the Iordanskii–Kogarko-van Wijngaarden model, a physically hetero-
geneous medium is treated as homogeneous, and the Rayleigh equation for β:
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is used as closure for system (1). Here σ is a surface tension, µ is viscosity,
p0, ρ0, R0,

√
p0/ρ0, and R0

√
ρ0/p0, are the reference parameters used to

obtain a dimensionless system of equations. In (1), n = 7.15.
In cylindrical coordinates, the flow domain is a rectangle with 0 ≤ z ≤

zmax, 0 ≤ r ≤ rst. The boundary conditions set at (z = 0) correspond to a
steady shock wave of amplitude Psh with prescribed axial velocity and zero
radial velocity. Symmetry conditions are set at r = 0. The computations
were performed for k0 = 0.001 ÷ 0.1, R0 = 0.01 ÷ 0.4 cm, and Psh =
3 ÷ 10 MPa. The boundary condition set at r = rmax rules out reflections
of the shock wave from the shock-tube wall. For the wave emerging from
the flow domain at z = zmax, the second axial derivatives of all variables
are set to zero. To solve system (1), we adapted the upwind explicit and
splitting schemes described in [3] to the present problem. At the first stage,
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we applied the scheme proposed in [4]. Subsystem (2) was computed using
the Runge–Kutta Merson fourth-order implicit scheme.

3. Parallelization of the algorithm of the problem solution

The computer system MVS1000 is a system with distributed memory. Such
systems are primarily intended for computing the MPMD- and the SPMD-
programming models. As is known, the problems that are solved by finite
difference methods are efficiently parallelizable on computer systems with
distributed memory with the use of the SPMD-model computation, or by the
data decomposition method [5–11]. The latter is applied for parallelization
of the algorithm of the problem in question.

According to the definition from Section 2, the computing model of the
problem under consideration consists of a homogeneous liquid medium in
a volume including a bubble cluster. Both media contribute differently to
the total time of calculation, therefore, in order to elucidate features of a
parallel algorithm, its characteristics are determined for different sizes of a
computer system, different sizes of a cluster and different sizes of a problem.

3.1. The computational domain. A medium is set as a 2D rectangle of
Xm× Ym size (in centimeters). The bubble cluster is a 2D domain included
into the medium of a given configuration.

In the domain of the medium, a uniform rectangular grid is set that
defines a computational space with Nm ×Km nodes along the coordinates
r and z. The same computational grid is used for the bubble cluster where
applicable (Figure 2).

Values of each parameter that are calculated at the points of the given
grid defining the medium and the bubble cluster are stored according to
the number of parameters in 13 arrays, ten intended for the medium, and
three–– for the bubble cluster.

Three medium parameters and one parameter of the bubble cluster are
calculated by the explicit five-point “cross” scheme. The other parameters
make use of the values only at the same grid points, obtained at the (k+1)th
(previous) iterative step, when they are calculated at the grid points at the
kth iterative step.

3.2. Parallelization of the algorithm. As stated above, the paralleliza-
tion of the problem algorithm is carried out by the method of decomposition
of computational spaces: the medium and the bubble cluster are divided into
sub-domains, and these sub-domains are distributed at each node. The size
and configuration of the sub-domains of the decomposed spaces are automat-
ically calculated at each node according to their parameters and the value P
that is equal to the number of nodes in a computer system. Decomposition
of the medium and the bubble cluster spaces has some peculiarities.
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Figure 2. Examples of decomposition of computational sub-domains:
a medium and a bubble cluster

Decomposition of the computational domain of the medium. The com-
putational domain of the medium is divided into the equal strips along the
coordinate z: Km/P×Nm, where P is the number of nodes, that is, the space
is divided along the direction of the plane wave propagation (see Figure 2).
Since the computational domain of the medium is represented by values
of 10 parameters calculated at the grid points, then all the arrays are cut
into sub-arrays, respectively. The arrays calculated by the “cross” scheme
are decomposed with overlapping the values of the neighboring points of the
boundary sub-domains. Decomposition of other arrays is done without over-
lapping the boundary sub-domains. All parts of the arrays corresponding
to these sub-domains are then distributed among the nodes of the system.

Decomposition of the computational domain of the bubble cluster. The
computational domain of the bubble cluster is divided similar to the medium
space into strips along the coordinate z, the lines of cuts coinciding with
those of the computational domain. The width of a strip in the computa-
tional domain depends on the number of processors P . As the computational
domain of the cluster depends on the medium domain, the sizes of the sub-
domains of the decomposed computational domain of the bubble cluster and
their configuration for different P will be quite different (see Figure 2). The
sub-domains of the decomposed cluster domain are distributed among nodes
along with the respective sub-domains of the medium, to which the cluster
is bound. Therefore, first the cluster sub-domains will be distributed not
among all the nodes, and, second, the size and configuration of the clus-
ter sub-domains distributed among the nodes will be different. The nodes
among which the decomposed cluster sub-domains are distributed should be
able to simulate these parts of the cluster in their memory. In this case, the
simulation should be carried out automatically with different cuttings of this
cluster. In the original sequential algorithm, the size of the bubble cluster,
its configuration and location in the medium are set in a special manner,
i.e., parametrically. The cluster sub-domains are determined at each node
by the lines of cuttings of the computational domain. The decomposition
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algorithm of the bubble domain is universal independent of the size and
configuration of a cluster.

All the arrays of the parameter values defining the computational domain
of the bubble cluster are cut to sub-arrays according to the partitioning of
the domain. The array calculated by the “cross” scheme is decomposed
with overlapping the values at the neighboring points of the boundary sub-
domains. The other arrays are decomposed without overlapping the bound-
ary sub-domains.

3.3. The computer system topology. The topology of a computer sys-
tem, as is known, is defined by the structure of the algorithm of a problem in
the case under consideration by the data structure, as the algorithm is par-
allelized by data. The data in the algorithm are divided into strips, and the
data exchange in the course of calculation is only between the neighboring
strips. Therefore, the linear topology of a computer system is sufficient for
the problem solution. The strips of the decomposed computational domain
of the medium are sequentially distributed among nodes following their num-
bers. The strip with the smallest coordinates of the grid points locates at
the 0th node, the one with the bigger coordinates–– at the 1st node, etc., the
strip with the biggest grid coordinates–– in the last node. The sub-domains
of the bubble cluster are distributed among nodes according to the strips of
the medium, where they are located.

The imposed boundary conditions of the computational domain of the
medium along the coordinate z are located at the 0th and the last nodes, the
boundary conditions along the coordinate r being located at all the nodes.

3.4. Acceleration and efficiency of the parallel algorithm. When
developing a parallel algorithm, it is important to know of the possibilities
to accelerate calculations as well as of overhead expenses associated with
organization of the interactions of the parallel branches. In addition, it is
important to know the efficiency coefficients, allowing its comparison with
other parallel algorithms as well as evaluation of its quality from the stand-
point of computational costs needed for the parallel interactions. Large
volumes of data are required for obtaining a good result on the given prob-
lem. That is why, the characteristics of the parallel algorithm dependent on
the size of a computer system allow us to estimate constraints of the prob-
lem size. Starting from this size, the efficiency and acceleration will either
be zero or negative, and then we will have to find the new approaches to
parallelization of the algorithm or to the problem solution as a whole.

The acceleration coefficient of a parallel algorithm on the computer sys-
tem with P > 1 nodes (in the sequel, P > 1) according to [6] will be assessed
by the value:
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Up =
T1

Tp
, (3)

where T1 is the computational time of a sequential algorithm on one node;
Tp is the computational time of a parallel algorithm on the computer system
with P nodes.

The efficiency coefficient of a parallel algorithm on the computer system
of P nodes will be assessed by the value:

Fp =
Tpc

Tpc + Tpv + Tps
, (4)

where Tpc is the computational time (other time costs not taken into ac-
count), Tpv are the total time costs per data exchanges between the nodes
of the same system, Tps is the total time costs needed for synchronization
of branches of a parallel program.

The domain of the medium and the cluster domain differently affect
the total time of calculations because of their differences in size and in the
number of the major parameters. Therefore, for a better verification of the
main characteristics of a parallel algorithm, let us consider two versions of
testing:

• in the first version, the size of the cluster domain is fixed and the size
of a computer system varies;

• in the second version, the size of a computer system is fixed, and the
size of the cluster domain varies.

In the first version, testing is carried out for two different sizes of the
medium domain.

3.5. Acceleration and efficiency of the parallel algorithm in calcu-
lations on different size systems. This section presents the results of
the first version of testing the parallel algorithm of the problem under study.
In this case, the characteristics of the algorithm are determined first for two
different sizes of the medium domain, and, second, for the two types of cal-
culations in each of these domains: 1) calculations in the medium with the
cluster included in it and 2) calculations only in the homogeneous medium.
In practice, the cluster domain can have an arbitrary configuration, that
is why when calculating in the homogeneous medium without cluster, the
characteristics of the parallel algorithm are limiting for the problem as a
whole and, therefore, are interesting.

Here, also, one more coefficient is discussed, let us call it a relative ac-
celeration
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Up,2p =
Tp

T2p
.

This coefficient means the following: which value the algorithm acceleration
will change for if the number of nodes in the system is twice increased.

Testing was carried out on the computer system MBC1000 on different
number of nodes: on one, two, four, eight, 16 and 32 nodes with the use
of the parallel programming system MPI [12, 13] and for the two sizes of
medium domains. Let us denote them as O1 and O2. In this case, O1 was
equal to Nm ×Km = 320× 3200 grid points along the coordinates r and z,
while O2 was twice as large and was equal to Nm ×Km = 640 × 3200 grid
points along the same coordinates. The cluster domain was the same for all
the cases and represented a circle of 20 · 103 points.

Here the coefficients Up, Fp, Up,2p, and the total time of solving the
problem Tp for calculations in a homogeneous medium O1 will be denoted
as U1

p , F 1
p , U1

p,2p, and T 1
p , and for calculations with a cluster in the same

medium–– as Û1
p , F̂ 1

p , Û1
p,2p, and T̂ 1

p .
In Figure 3, we present the comparison of coefficients U1

p , F 1
p , and U1

p,2p

with Û1
p , F̂ 1

p , and Û1
p,2p, respectively, for the parallel algorithm when com-

puting on a different number of nodes.

a b

c

Figure 3. Comparison of the algo-
rithm for calculations in homogeneous
medium O1 (solid line) and in the
same medium with a cluster (dashed
line) when computing on a different
number of computers: a) accelera-
tion coefficients Up, b) efficiency coef-
ficients Fp, and c) relative acceleration
coefficients Up,2p
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In Figure 3a, the acceleration coefficients U1
p appeared to be sufficiently

good, for example, U1
2 = 1.8, U1

32 = 22, i.e., on two nodes the speed of the
algorithm was almost twice as large and on 32 nodes –– twenty two times
as large as compared to one node. When computing on P processors, each
one takes P times less volume of the parallelized data. Thus, the total time
of access to data is decreased on each node. Therefore, despite of the time
losses associated with interaction of branches of the parallel program, the
acceleration coefficients for a given size of a computer system are still good
enough.

The coefficients U1
p are limiting for Û1

p , i.e., the smaller the cluster
domain, the closer the graphs Û1

p to the graphs U1
p .

Acceleration coefficients of both types of calculations in the medium O2

are close to those in the medium O1. Recall that O2 is twice as large as O1.
In Figure 3b, the efficiency coefficients assess a “contribution” of over-

head expenses to the total time of calculation with interactions between
branches. It is evident that with an increase of sizes of a computer system
the efficiency of parallel calculations gradually decreases. For systems con-
sisting of two and more nodes, the communication channels between them
essentially affect the speed of data exchange and, consequently, the total
time of calculations. From (4), it follows that this graph shows a relative
increase in the overheads needed for parallel interactions with the growth of
the size of the computer system.

Let us note that graphs of the efficiency coefficients of the algorithm for
calculations in the medium O2, like the acceleration coefficients in Figure 3a,
are similar to the graphs, presented in Figure 3b.

The graphs of the relative acceleration coefficients Up,2p for different
types of calculations (see Figure 3c) are also indicative and help in answer-
ing the question: how many times does the speed of calculation increase
if a computer system is twice increased? One can see that if there are 32
nodes in a system instead of 16, then the acceleration U1

p,2p has increased
only by coefficient 1.65, while Û1

p,2p –– only by coefficient 1.57. These graphs
indicate to a decrease in the speed of calculations with an increase of the
size of a computer system. This implies that with a certain size of a com-
puter system, the growth of speed of calculation will be equal to 1 or even
be negative. This is valid for a certain size of a problem.

The two latter graphs indicate to a decrease in efficiency as well as in
a relative speed of calculations with a growth of a computer system. This
should be so for a given type of a problem. For a concrete problem, with a
growth of a computer system, the volume of data, distributed among each
processor, decreases proportional to the size of this system (see Subsec-
tion 3.2). This means that the number of calculation operations decreases
with a growth of the size of a computer system, while the number of exchange
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Figure 4. Graphs for the total com-
puting time of the algorithm when
computing on a different number of
computers for calculations in the ho-
mogeneous medium O1 (solid line),
the medium O1 with a cluster (dashed
line), the homogeneous medium O2

(dotted line), and the medium O2 with
a cluster (dash-dotted line)

operations –– between parallel branches –– remains the same. Here we mean
the exchanges for calculations of three parameters of a medium and one
cluster parameter (see Subsection 3.1). It should be noted here that graphs
of the relative acceleration coefficients of the algorithm for calculations in
the medium O2 are similar to the graphs in Figure 3c.

And, finally, Figure 4 reflects the dependence of the total time of calcu-
lation on the size of a computer system for media of different sizes.

3.6. About the influence of the size of a bubble cluster on total
time of parallel computation. In this section, we present the results of
the second version of testing the parallel algorithm of the problem under
study in the case when the size of a computer system is fixed and the size
of the cluster domain varies.

For the problem in question, of no less importance is to know about
the influence of the size of a bubble cluster on the total time of parallel
computation. The testing was carried out on the computer system MVS1000
with a fixed number of nodes, i.e., four, but with different sizes of a cluster.
In all the cases, the medium domain was the same and equal to Nm×Km =
1280×1280 grid points along both coordinates. The size of a bubble cluster
and its distribution among the nodes varied.

Two sub-versions were considered that are distinct both in size of clusters
and in their location in the nodes. Inside each sub-version, the clusters
differed only in size, their location in the nodes being the same. In this
case, the size of a cluster was determined by the number of points of the
cluster domain; its configuration being unimportant. In the first version,
four clusters were considered with the sizes K1 = 50 · 103, K2 = 100 · 103,
K3 = 150 · 103, and K4 = 200 · 103 points, respectively; in the second
version there were also four clusters with K1 = 100 · 103, K2 = 200 · 103,
K3 = 300 · 103 and K4 = 400 · 103 points. In the first version, clusters were
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Figure 5. Graphs for the to-
tal computing time of the al-
gorithm on four computers for
sub-versions 1 (solid line) and 2
(dashed line)

located in one node, in the second version clusters were located in two nodes
but with a uniform distribution of points among these nodes.

In both versions, comparisons were made both with parallel computa-
tions in a homogeneous medium (without cluster) and with calculations in
a homogeneous medium of a sequential algorithm in one node.

In Figure 5, a graph of the times of parallel computations for both sub-
versions of tests, obtained on the computer system consisting of four nodes
is shown. Here k0 denotes the time of calculation in a homogeneous medium
without cluster, ki (i = 1, 2, 3, 4) is the time of calculation in the medium
with the corresponding cluster Ki for both sub-versions 1 and 2 (the notation
of clusters is presented above).

These two graphs show that the size of a bubble cluster essentially affects
the total time of calculating the problem. It should be mentioned that
these graphs are almost equivalent. This is explained by the following.
When a cluster is located only in one node, the time of calculation in it
increases, while all other nodes have to wait for synchronization in exchanges
on completion of cycles. If at this very time another node carries out the
same task, the time delays will be the same.

4. Results of the parallel version testing

Figures 6–9 show distributed pressures in the plane (r, z) in a focusing shock
wave generated by the toroidal bubble cloud at several instants. The pres-
sure is quantified (in units of the hydrostatic pressure p0 = 0.1 MPa).
The maps were computed for psh = 3 NPa, rst = 40 cm, zmax = 65 cm,
lcl = 20 cm, k0 = 0.01, and Rb = 0.1 cm.

Let us dwell on three calculations with different geometrical parameters
of a toroidal cloud of bubbles. As was shown in [2], the wave picture is
defined not only by the volume of a bubble domain, but also by its shape.
Let us compare the calculation results for a torus radius Rtor = 6 cm, radii
of cross-sections Rcirc = 1 cm and 6 cm (see Figures 6–8).
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a b

Figure 6. The pressure distribution after 200 µs for the values of parameters
Rtor = 6 cm, Rcirc = 1 cm (a) and 6 cm (b)

a b

Figure 7. The same as in Figure 6, but after 250 µs

Figure 6 represents distributed pressures in the plane (r, z) after 200 µs.
Despite of the fact that bubble clouds in the shock tunnel are located in the
same place in all versions of calculations, the wave picture is specific in each
case. In the first case (Figure 6a), the shock wave, radiated by the cluster,
forms a domain of axially symmetric irregular reflection on the axis of the
domain after 200 µs. In the second case, when the inner boundary of the
torus is a point, the process of absorbing the energy of the incident shock
wave by the cluster still takes place after the indicated time.

Figure 7 illustrates the pressure distribution after 250 µs. The results
of calculations for the bubble cluster with a cross-section radius 1 cm (Fig-
ure 7a) demonstrate the formation of Mach disks on the axis of symmetry,
while Figure 7b shows the shock wave, radiated by the toroidal bubble cloud,
converging to the axis of symmetry.

After the time of 300 µs (see Figure 8), one can observe the radiation
into the liquid of a sequence of spherical shock waves of low amplitudes.
Such a radiation is generated by the cluster of the cross-section radius of
1 cm. In this case, the shock wave, radiated into the liquid by the cluster,
is propagating along the axis and has the pressure amplitude 1.5 times as
large as that of the wave falling on the bubble cloud at a distance of 20 cm
from the torus plane. At that very time, the wave radiation by the cluster
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a b

Figure 8. The same as in Figure 6, but after 300 µs

a b

Figure 9. The pressure distribution for the values of parameters Rtor = 6 cm,
Rcirc = 6 cm after the time instants 320 (a) and 450 µs (b)

of the cross-section radius of 6 cm has just begun. In this case, the wave
picture of the process of the radiated shock wave converging to the axis is
quite different. The investigation of this process has become possible due to
the use of multi-processor systems.

Figure 9 presents pictures of the distributed pressures for the values of
parameters: Rtor = 6 cm, Rcirc = 6 cm after the times of 320 and 450 µs. In
this case, the topology of the current is the following: with such a configu-
ration of a source, the front of the radiated shock wave, converging to the
axis, represents a concave surface with a pressure gradient directed from the
axis of symmetry. Despite of the fact that the pressure in the axis vicinity
is minimal on the converging front, the accumulation of the current, in the
end, results in the formation of a powerful solitary shock wave in the zone
near to the source. This wave amplitude almost 30 times exceeds that of the
wave interacting with the torus (Figure 9a). In the sequel, a chain of the
Mach disks is formed on the axis (Figure 9b). The pressure amplitude in the
irregular reflection zones is characterized by its large values, which essen-
tially exceed the amplitudes of the spherical wave, radiated by the cluster
into the liquid.
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h τ

Pressure

Rtor = 6 cm
Rcirc = 1 cm

Rtor = 1 cm
Rcirc = 1 cm

Rtor = 6 cm
Rcirc = 6 cm

0.1000 0.000200 8.54 19.44 49.86
0.0500 0.000100 9.94 22.90 22.90
0.0125 0.000025 12.71 30.87 105.85

The character of the pressure amplitude distribution along the axis of
symmetry is practically the same as in [2]. The use of supercomputers
has allowed us to improve the earlier obtained results. The table presents
the values of pressure for the calculation on a personal computer (lines 1, 2)
and the same on the multi-processor system (line 3). As is seen, a maximum
value of the pressure amplitude in the Mach disk kernel, obtained on the
supercomputer is approximately 1/3 times as large as the one obtained on
a single computer. The pressure amplitude in the Mach disk kernel is to a
greater extent dependent on the geometrical cluster parameters than on the
volume of the bubble cloud [2]. Let us compare maximum values of pressure
in the Mach disk kernel shown in the table. The last column presents the
calculation data for a bubble cluster with the parameters: Rtor = 6 cm,
Rcirc = 6 cm. For such a geometrical configuration of the toroidal cluster,
the pressures in the Mach disk kernel are 35 times as large as the amplitude
of the wave interacting with the torus. Thus, the pressure becomes eight
times greater than in the case of the plane shock wave of the cluster with
the parameters: Rtor = 6 cm, Rcirc = 1 cm. As this takes place, the volume
of the cluster is only six time as large. Let us consider the case when the
toroidal cluster has the parameters: Rtor = 1 cm, Rcirc = 1 cm. Hence,
its volume is six times less than that of the cluster with the parameters:
Rtor = 6 cm, Rcirc = 1 cm. Nevertheless, the amplification obtained is 2.5
times higher.

Analysis of the wave field structure has shown [2] that as the Mach
disk propagates along the axis, the pressure dynamics on the axis appears
to be a non-monotonic function of a distance from the torus. With fixed
parameters of the current, the pressure distribution has a distinct maxi-
mum, whose value is generally defined by the geometrical parameters of the
toroidal bubble cluster (Figure 10). With an increase of a distance from
the torus, a sharp growth of the pressure in the Mach disk kernel in its
near zone is observed, the wave amplitude increasing by the factor of 4–35.
In the case, when the inner torus boundary is a point, a sharp growth of
pressure in the Mach disk kernel changes for a sharp decay. The character
of the subsequent behavior of pressure indicates to an asymptotic tendency,
when the pressures in the Mach disk kernels (at a distance of 20 cm from
the torus) become practically equal. However these pressures still noticeably
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a b

Figure 10. Axial pressure distribu-
tion in the Mach disk kernel for tori
with the parameters: (a) Rtor = 6 cm,
Rcirc = 1 cm, (b) Rtor = 1 cm, Rcirc =
1 cm, (c) Rtor = 6 cm, Rcirc = 6 cm c

exceed the amplitude of the wave interacting with the torus. Graphs show
the pressure dynamics on the axis as function of distance from the torus.
These graphs were plotted with the help of the sequential algorithm (dashed
curves) and the parallel algorithm (solid curves). These graphs show three
configurations of the bubble cluster. Calculations with the use of the paral-
lel algorithm make it possible not only to define more precisely the pressure
values in the Mach disk kernel, but, also, to obtain the pressure dynamics
data on the axis in the far zone of the cluster. Obtaining high values of the
pressure amplitude at large distances from a source is a challenging problem
in acoustics. At a distance of 40 cm from the torus plane, the pressures in
the Mach disk kernels exceed the amplitude of the wave, interacting with
the torus by the factor of 1.5 (Rtor = 6 cm, Rcirc = 1 cm) and by the factor
of 2.5 (Rtor = 6 cm, Rcirc = 6 cm). Thus, based on the data obtained, we
may conclude that the case when the torus radii and the torus section are
equal–– this is the best effective configuration of the toroidal bubble cluster
for attaining the directed radiation of a maximum amplitude. As is seen
from Figure 10, maximum pressure values in the Mach disk kernel on the
axis of symmetry of the torus are attained in a pure liquid. For example, the
peak of pressure in the Mach disk kernel in the cluster with the parameters
Rtor = 6 cm, Rcirc = 6 cm is at a distance of 8 cm from the torus.
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It is seen from the figures that calculations carried out on the supercom-
puter are more accurate and characterized by a wider scope of data to be
obtained.

5. Conclusion

This paper proposes the new parallel algorithm of the axially symmetric
problem of the interaction of the plane shock wave with a free bubble system
(the toroidal cluster) resulting in the formation in the liquid of a stationary
oscillating shock wave. The tests have shown that:

• the algorithm of the problem is parallelized sufficiently well on com-
puter systems with distributed memory (if the medium domain is
320 × 3200 and the cluster domain has 20 · 103 points, we attain 22
times acceleration on 32 computers;

• Characteristics of the parallel algorithm do not become worse with an
increase in the size of the problem;

• the new results were obtained when solving a real problem: the wave
field structure in a distant cluster zone was analyzed for a wide range
of geometrical parameters of a toroidal bubble cluster, the improved
values of the pressure dynamics when the Mach disk is propagating
along the axis were obtained for large time intervals.

It should be noted that each dimension of the problem in question cor-
responds to a certain size of a computer system that is optimal for solving
this problem.
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