
Bull. Nov.Comp.Center, Comp.Science, 17 (2002), 31{38c 2002 NCC PublisherHigh-level communication functionsfor parallel programsV.D. KorneevIn this paper, the functions, raising the level of communication operations andmapping operations of the solution space of applied tasks on the multicomputermemory in the MPI-programs, are o�ered.1. IntroductionAt the present time, the number of the multicomputer systems, assem-bled on a di�erent microprocessors basis, such as: Intel Paragon (Intel,the USA), SP2 (IBM, the USA), Cray3D and Cray3E (Cray Research, theUSA), PowerXplorer (Parsytec, Germany), MVS-1000 (Quantum, Russia),is rapidly increasing. The number of computers in such systems also grows.The multicomputer system with with 2048 computers has been created bythe Hitachi company (Japan). The ASCI Red (the USA) consists of morethan 9,000 Pentium PRO/200 computers. The ASCI Wait (the USA) con-tains 8,192 computers PowerPC 3-III with the peak processing power 12.2Tops. An important feature of such a computing system is the possibilityto concentrate all the computing resources on the solution of one appliedtask.Along with the development of multicomputer systems, the parallel pro-gramming systems are being developed as well. One of such systems is theMPI system [1, 2] being one of the most advanced from the existing systems.The MPI is the basic programming means of the above-mentioned multi-computers and many other types of computers not mentioned here. TheMPI works on the most di�erent multicomputer architectures, both withdistributed, and shared memories. In addition, the MPI works on homoge-neous and heterogeneous computer networks. An important characteristicof the MPI is that for the user programs it creates a virtual environment:a virtual multicomputer with distributed memory and virtual networks ofthis virtual multicomputer. Virtual computers and their communicationstructures are mapped by the MPI system onto a concrete physical systemautomatically, i.e., the user is not obliged to take architectural peculiari-ties of a certain multicomputer into account when writing his own parallelprograms. In the program start operator, the user orders the number ofcomputers for solving his task, and in the executed program he de�nes a

32 V.D. Korneevcommunications topology between these computers. The MPI realizes theuser's order on a concrete physical system. In this case, restriction is anoperative memory size of a physical multicomputer. A virtual environmentensures the possibility to transfer the user programs, thus providing thepossibility to create libraries and the parallel program packages.The computing system architectures with distributed memory are ba-sically oriented to the two computing models: the MPMD (Multiple pro-grams { Multiple Data) and the SPMD (Single program { Multiple Data).In the �rst model, the MPI-program represents a set of autonomous pro-cesses functioning under the control of their own programs and interactingwith help of a standard set of library procedures. I the second model, allthe branches are executed under the same program. Since the MPI createsa virtual multicomputer system with distributed memory, then accordinglythe MPI is oriented to these computing models.Since multicomputers are basically oriented to solving one problem, theSPMD-model is used in most cases on such systems. In other words, thismodel is identi�ed as data parallelization [3{11]. Problems of the linear alge-bra, problems, solved by di�erence methods and many others are su�cientlye�ectively parallelized by this method. The above problems are intrinsic ofsuch application areas as: nuclear physics, geophysics, weather forecasting,and many others. Such a broad use is provided by the following character-istics of this model. First, logical schemes of tasks from the above-speci�edapplication areas correspond to the given computing model. Second, withthe help of this parallelization method it is possible to provide the optimumtiming relationships between computations in branches and communicationsbetween these parallel branches. And third, the algorithms parallelized bythis model can be readily easy adapted to the number of computers in thecomputing system.When parallelizing algorithms according to the SPMD model, the fol-lowing problems arise:1. The mapping of the computing space of applied tasks onto the multi-computer memory with overlapping of the domain boundaries or with-out it.2. The exchange of the overlapping domain boundaries between branchesof a parallel program.The problem of data mapping onto a parallel computing system is in ageneral case, a di�cult task. A special case of such a mapping is consideredhere. It is expected that a computing space is presented as n-dimensionalarrays of values, i.e., this is a mapping of n-dimensional array onto a multi-computing system memory. Such a mapping corresponds to a large class ofpractical tasks.

High-level communication functions for parallel programs 33The MPI system has all necessary means for solution of the problemsin question. First, the MPI has the su�ciently developed means for thecreation of the MPI-types of data. The MPI-types essentially raise a pro-gramming level, in particular, in exchanging data between computers ascompared to the programming of exchanges by standard types of data. Sec-ond, the MPI has a large set of communication functions of a su�cientlyhigh level. However if we look, for example, at the MPI-program as prod-uct of two matrices on a three-dimensional computer grid, we will see thatthe computing part has 5 operators, while the other part of the programhaving about 90. The latter are operators of the creation of the MPI-typesof matrix domains sent to computers from the root computer, as well as ofthe creation of the MPI-types of results collected in the root computer, andalso, of sending and receiving data. This means that the main e�orts anda great deal of time needed for writing a parallel program is spent on thecreation of the MPI-types and data communications. In this case, the par-allel program becomes bulky and poorly debugged. At the same time, theproblem of data distribution between the parallel system computers and thesubsequent collection of results from all the computers arises for the systemprogrammers, and each programmer has to solve this problem anew. There-fore, transferring the distribution, collection and data exchange functions tothe MPI library of functions seems to be an urgent task.2. Communication functionsIn this section, the functions, substantially saving the user, the trouble andexpense of the above-mentioned di�culties, are o�ered. Such functions arethe following:1. The functions of mapping n-dimensional arrays onto multicomputermemory;2. The functions for the exchange of overlapping domain boundaries be-tween parallel program branches.For the e�cient solution of a problem, the structure of its parallel algo-rithm should be brought nearer to the computing system architecture. Thevirtual topologies allow providing an optimum \approximation" of a prob-lem to the system architecture with a good transfer of programs within theframework of di�erent computing systems. Since we consider n-dimensionalarrays for solving a problem, the virtual topology of a computing sys-tem should be similarly de�ned, i.e., we mean the Cartesian topology (n-dimensional grids and torahs). For example, for a three-dimensional data ar-ray, such computer structures as: one-dimensional, two-dimensional, three-dimensional grids, and torahs are acceptable.

34 V.D. KorneevThe function realizing such a data decomposition is the following:Rmas_mpi(void* IBUF, MPI_Datatype datatype, int ndims,int* dims, int p, MPI_Comm com, int p, void* PBUF,int* rdims, MPI_Datatype* gran, int* disp,int* left_right);Further we denote the input parameters IN and output { OUT.IN IBUF is the name of a data array, specifying the initial computing space.The array is stored in the root computer. This array needs to be\cut" into domains, and these domains should be distributed amongthe computers.IN datatype is the type of the IBUF array.IN ndims is the dimension of the IBUF array.IN dims is the one-dimensional integer ndims array, whose elements arethe dimensionality of IBUF array along the corresponding coordinates:IBUF[0] is the size along the coordinate 0, IBUF[1] { along the coor-dinate 1, etc.IN com is the name of a communication topology. The name of topologyis necessary for the communication between branches of a parallelprogram.IN p is the number of overlappings of boundary domains.OUT PBUF is the name of the pointer to an array. In each computer, thisname is associated with a memory space, dynamically selected by thefunction Rmas_mpi() for the distributed domains.OUT rdims is the one-dimensional integer ndims array, whose elements arethe dimensionality of the IBUF array along the corresponding coordi-nates: IBUF[0] is the size along the coordinate 0, IBUF[1] { along thecoordinate 1, etc.OUT gran is the one-dimensional ndims array, whose elements are the MPI-types of overlapped boundaries of the domains: gran[0] { the MPI-types of the boundary along the coordinate 0, gran[1] { along thecoordinate 1, etc.OUT disp is the one-dimensional integer 2*ndims array, whose elementsare the displacements of the boundaries within the domain. This pa-rameter is necessary for communication functions for an exchange ofdomain boundaries between branches of a parallel program.OUT left_right is the one-dimensional integer 2*ndims array, whose ele-ments are the serial numbers of the neighboring computers along eachcoordinate in the Cartesian structure. For example, left_right[0]

High-level communication functions for parallel programs 35and left_right[1] are the neighboring computer numbers along thecoordinate 0, towards decreasing and increasing computer serial num-bers (number MPI_PROC_ NULL if there is no neighboring computer);left_right[2] and left_right[3] are the neighboring computernumbers along the coordinate 1, towards decreasing and increasingcomputer serial numbers, etc.The values of the output array elements { gran, disp and left_rightare sought by the function Rmas_mpi() for each computer individually.These arrays are necessary for communication functions to carry out anexchange of domain boundaries.Decomposition of the IBUF array to domains according to the parametersndims, com and p and distribution of these domains among the computersare executed by this function. An example of the decomposition of thetwo-dimensional array to domains and distribution of the domains through-out the two-dimensional computer grid is shown in the �gure below. Theoverlapping domains are marked with dotted lines.
Decomposition of the two-dimensionalcomputing space to the computing systemmemory with the two-dimensional \grid"topology, with overlapping of boundariesFurther we describe a communication function, realizing an exchange ofthe overlapping boundaries domains between the computers. This exchangeis realized at the end of each computing iteration. This function takes intoaccount a corresponding computer location in the Cartesian topology.Mgr_mpi(void* PBUF, int ndims, int* rdims, MPI_Datatype* gran,int* disp, int p, int* left_right, MPI_Comm com,int* f_obp)The parameters of this function: PBUF, rdims, gran, disp, left_right,com are output parameters of the function Rmas_mpi(). Parameters ndimsand p are the same as input parameters of the function Rmas_mpi(). In thegiven communication function, all the parameters, except for the last one,

36 V.D. Korneevare the input parameters (IN) and their description is given in the functionRmas_mpi().OUT f_obp is the logical variable, whose value is assigned by the functionMgr_mpi() depending on the generalized condition of termination ofloops (in all the computers). If in all the parallel program branchesf_obp = 1, a parallel program can terminate loops, otherwise thecomputing iterations should be continued. However the condition oftermination of work of each computer is an unconditional execution ofthe condition f_obp = 1 in all the computers.An example of a program fragment of the solution to the Poisson equa-tions in the two-dimensional domain by the Seidel method using the above-described communication functions is as follows.#define Mndims 2 // The dimension of computing space and domains#define Pndims 2 // The dimension of the Cartesian system topology#define Mn 100 // The size of computing space along the coordinate X#define Mm 200 // The size of computing space along the coordinate Y#define P0 4 // The size of the Cartesian system topology along// the coordinate 0#define P1 4 // The size of the Cartesian system topology along// the coordinate 1double *IBUF; // The pointer to the initial computing domaindouble *PBUF; // The pointer to the computing domain in each// computermain (int argc, char **argv){ int Mdims[Mndims]; // The sizes of the initial domain along// the coordinatesMPI_Comm grid; // The name of a computing system structureMPI_Datatype gran[Mndims]; // Types of overlapping boundaries// of domainsint disp[2*Mndims]; // Displacement of boundariesint left_right[2*Mndims]; // Serial numbers of the neighboring// computerint Rpdims[Mndims]; // The sizes of distributed domains along// the coordinatesint p = 1; // The number of overlappingsint flag; // The logical variable for a generalized// conditional transitionint Pdims[Pndims]; // The sizes of the Cartesian structure// along each coordinateint Perid[Pndims]; // The ringed Cartesian structure along// the coordinates

High-level communication functions for parallel programs 37int size; // The size of a computing systemint rank; // The serial computer numberint i, j, F1, Fi, Fj;double x = 0.01, y = 0.01; // The grid steps of computationsMdims[0] = Mn;Mdims[1] = Mm;Init(&argc, &argv); // The initialization of the MPI library/* The determination of the computing system size */MPI_Comm_size(MPI_COMM_WORLD, &size);/* dims array is zeroed and Perid array is �lled in */for(i=0;i<Pndims;i++) { Pdims[i]=0; Perid[i]=0; }/* dims array is �lled in, where the size of a network is determined */MPI_Dims_create(size, Pndims, Pdims);/* The creation of the topology \grid" with the communicator-grid */MPI_Cart_create(MPI_COMM_WORLD,Pndims,Pdims,Perid,1,&grid);/* Each branch of the parallel program de�nes a serial number inthe grid*/MPI_Comm_rank(grid, &rank);/* Zero branch of the parallel program determines the memory for theinitial computing domain and initiates its boundary values */if(rank == 0){ IBUF = (double *)calloc(Mn*Mm, sizeof(double));/* The boundary values initialization of the IBUF domain */: : : : : : : : :}/* Further all parallel program branches work again. *//* Recall that Rmas_mpi() is a collective function.All the parameters are given. */Rmas_mpi(IBUF, MPI_DOUBLE, Mndims, Mdims, grid, p, PBUF,Rpdims, Gran, disp, left_right);/* Further follows the main iterative loop. All the parallel programbranches do computations in these domains */flag = 0;while (flag == 0){ for (i = 1; i < Rpdims[0]-1; i++)for (j = 1; j < Rpdims[1]-1; j++){ F1 = PBUF[i][j];Fi = ((PBUF[i+1][j] + PBUF[i-1][j]))/x2;Fi = ((PBUF[i][j+1] + PBUF[i][j-1]))/y2;}/* The condition of the iterative process convergence is checked */if (\Was the convergence condition executed? ") flag = 1;else flag = 0;

38 V.D. Korneev/* Exchange of the domain boundaries is realized between parallelprogram branches and a generalized condition of terminationof the parallel program execution is done */Mgr_mpi(PBUF, Mndims, Rpdims, gran, disp, p, left_right,Grid, &flag);}} From the considered example it becomes clear that the decompositionof the initial computing space and the exchange of boundary domains havebeen simpli�ed in a maximum possible way.References[1] Snir M., Otto S.W., Huss-Lederman S., Walker D., Dongarra J. MPI: TheComplete Reference. { Boston: MIT Press, 1996.[2] Dongarra J., Otto S.W., Snir M., Walker D. An Introduction to the MPIStandard. { January 1995. { (Technical report / University of Tennessee;CS-95-274);[3] Malyshkin V.E., Vshivkov V.A., Kraeva M.A. About realization of the methodof particles on multiprocessors. { Novosibirsk, 1995. { (Preprint / RAS. Sib.Branch. Comp. Cent; 1052) (in Russian).[4] Evreinov E.V., Kosarev Yu.G. High E�ciency Homogeneous Universal Com-puting Systems. { Novosibirsk: Nauka, 1966.[5] Mirenkov N.N. Parallel Programming for Multimodular Computing Systems. {Moscow: Radio i Svyaz, 1989 (in Russian).[6] Malyshkin V.E. Linearization of mass calculations // System Computer Sci-ence / Ed. V.E. Kotov. { Novosibirsk: Nauka, 1991. { ü 1. { P. 229{259.[7] Valkovskiy V.A., Kotov V.E., Marchuk A.G., Mirenkov N.N. Elements of par-allel programming. { Moscow: Radio i Svyaz, 1983 (in Russian).[8] Valkovskiy V.A., Malyshkin V.E. The Synthesis of the Parallel Programs andSystems on Computing Models. { Novosibirsk: Nauka, 1988 (in Russian).[9] Korneev V.D. A system and methods of programming of multicomputers onan example of the computer complex PowrXplorer. { Novosibirsk, 1998. {(Preprint / Russ. Acad. Sci. Sib. Branch. Inst. Comp.Math. and Math. Geoph;1123) (in Russian).[10] Korneev V.D. Parallel algorithms deciding the task of linear algebra. { Novosi-birsk, 1998. { (Preprint / Russ. Acad. Sci. Sib. Branch. Inst. Comp. Math. andMath. Geoph; 1124) (in Russian).[11] Korneev V.D. Parallel Programming in MPI. { Novosibirsk: Russ. Acad. Sci.Sib. Branch, 2000.

