Bull. Nov. Comp. Center, Math. Model. in Geoph., 23 (2021), 19-24
(© 2021 NCC Publisher

Numerical solution of a one-dimensional inverse
retrospective problem for a system of
poroelasticity equations

P.V. Korobov, V.V. Alekseev

Abstract. This paper deals with the implementation of the statement of the
second initial condition for a system of dynamic equations of a two-phase one-
dimensional medium. The need to solve such a problem arises, for example, in the
case when the time conditions are specified at the initial and final moments of time.
The paper describes a numerical model for the direct and inverse problems, gives
examples of the numerical results of solving the problems posed.

1. Statement of the problem and description of the solution
method

Let us consider the initial-boundary value problem for the system of poroe-
lasticity equations with homogeneous boundary conditions [1-4]:

pssy = (pug)e — pix(u —v),, x€(0,L), te(0,T), (1
proe = pix(u—v), x€(0,L), te(0,T), (2

ult=0 = uo(x), utlt=0 = ¢(x), =€ (0,L), (3

V|t=0 =0, x€(0,L). (4

Ulg—0 = Ulp=r, =0, t € (0,T), (5

~— — — ~— ~—

Let the function ¢(z) be unknown. Additional information is given at the
time instance 7"

u(z, T) = (). (6)

In the considered problem for the system of poroelasticity equations, the
functions satisfy equations (1), (2), the first initial condition from (3), the
initial condition (4), and the zero Dirichlet conditions (5). In the retrospec-
tive inverse problem, the functions wy(x), @(z), u(x) > 0, x(z) > 0 and
the constants ps, p; are given. The functions wu(z,t), v(x,t) and the initial
condition ¢(x) are to be determined.

For the numerical solution of the initial-boundary value problem (1)—(5)
we use a three-layer difference scheme with the weight factors of the second
order of accuracy in ¢t with a step 7 and in & with an approximation step h
for equation (1). To approximate equation (2), we use a scheme of the first
order of accuracy in ¢ [5].
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We introduce the grid operator A = {A;}:

Aju' = (pjuly )an gy = p((j — 1/2)h). (7)
Therefore,
1 i+l _ o0 i1y _ 1 At (1= 201) Al A1) —
ﬁ(“j uj + ul ) = M(O’l ju ( o1)Aju' +o1Aju' )
1 o - -
— iy ((uy = vf) = (" =i h), (8)
TPs
. , | . .
U;H — V5 = pITXG (u; - 5(0212;-“ +(1- UZ)U}))a (9)

fori=1,...,.N—1,5=1,...,M — 1. Here x; = x(jh).
We approximate the initial and boundary conditions with the first order

of accuracy:
1 0
Uj

uj = uo(jh), =¢(jh), j=0,.... M,

The stability of the difference approximation of the problem is achieved
at o1 > 1/4, 09 > 1/2 [6]. We use 01 = 1/4,09 =1/2.
Solving the inverse problem is equivalent to solving the operator equation

Aq = a(x),

where A is the self-adjoint operator of the direct problem.

The problem of determining the function ¢ by the additional condition
u(z,T) = @ can be reduced to the problem of minimizing the functional
H(q) = (Aq,q) — 2(11, q) [7] if the operator A is positive-definite.

The proof of positive definiteness of the operator A requires more inves-
tigations. We just supposed this and will try the conjugate gradient method
to minimize the function H(q).

The iterative conjugate gradient method for determining the functions
u(z,t), v(z,t), ¢(x) from equations (1)—(5) and additional condition (6) is
as follows:

1. Choose an arbitrary initial approximation ¢°(x) for the function ¢(z).

(

2. Next, using the difference approximation (8), (9), we determine the
solution of the direct problem u®(z,t), v°(x,t) for the approximation
¢° ().

3. Choose as the initial residual ro(z) = u°(x, T) —@(z) and the auxiliary
function po(x) = ro(z).
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)

4. At the kth iteration (k = 1,2, ...), we find the solution @*(x, t), 7% (x,
of the direct problem (1)—(5) with @(z,0) = 0, @(x,0) = pg(z) in (
Then, we obtain Apy, = @*(z,T).

t

)-

5. From the solution obtained, we determine the iterative parameters for
the conjugate gradient method by the formulas:

(T, Tk) -
ap = ——r, Th+1 = Tk — QR ADE,
Tk+1,Tk+1
ﬂk:7( b +), Dk+1 = Tk + Brpk-
(TksTk)

6. The function ¢**! is found as follows:

" = oF + aypy.

The solution u*T1(x,t), v**1(x,t) is found from the direct problem
(1)~(5) with the second initial condition u¥*!(z,0) = ¢F+1(x).

2. Numerical examples

As examples of the numerical implementation, we consider a straight-line
problem (1)—(5) with homogeneous boundary conditions with p(z,t) = 1,
ug(x) =0, x =const, py=ps =1, T =L =1, ¢(v) = wsin(nx).

For solving the inverse problem, we will use (6) with known .

In Figures 1, 2, the solution u(x,t) of the direct problem is shown.

In Figures 3-7, we show the results of restoring the second initial condi-
tion ¢ for various initial approximations ¢°(x) and the solution u(z, t) of the
inverse problem with the conjugate gradient method and various parameters
of the computational grid.
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Figure 1. The solution to the direct problem for x = 0.5: at T =1 (left) and the
whole graph (right)
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Figure 2. The solution to the direct problem for x = 5: at T =1 (left) and the
whole graph (right)
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Figure 3. The solution to the inverse problem for ¢°(z) = 107 sin(nz), x = 5,
N =100, M = 100: reconstructed function ¢ (left) and the whole graph (right)
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Figure 4. The solution to the inverse problem for ¢°(x) = mcos(nz), x = 5,
N =100, M = 100: reconstructed function ¢ (left) and the whole graph (right)
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Figure 5. The solution to the inverse problem for ¢°(x) = mcos(nz), x = 5,
N =500, M = 100: reconstructed function ¢ (left) and the whole graph (right)
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Figure 6. The solution to the inverse problem for ¢°(x) = z, x = 5, N = 100,
M = 100: reconstructed function ¢ (left) and the whole graph (right)
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Figure 7. The solution to the inverse problem for ¢°(x) = z, x = 5, N = 500,
M = 100: reconstructed function ¢ (left) and the whole graph (right)
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3. Conclusion

As a result of the study described in this paper, a numerical model was imple-
mented to solve the reverse retrospective problem. The conjugate gradient
method was used to minimize the objective functional H(q). The efficiency
of the method proposed is shown for various initial approximations to the
solution of the problem. The rate of convergence and, accordingly, the com-
putational complexity of the process depends on the proximity of the initial
approximation to the exact solution of the problem.
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