
Bull. Nov. Comp.Center, Comp. Science, 48 (2024), 33–46
© 2024 NCC Publisher

Methodology for using Cellular Automata
simulators in engineering-physics modeling

systems: converting COMSOL multiphysics model
data representations into CATLIB formats

A.A. Korolev

Abstract. Computer-Aided Engineering (CAE) systems face significant challenges
in modeling complex, nonlinear, and discrete engineering phenomena. Traditional
numerical methods based on partial differential equations struggle to accurately
simulate systems with intricate spatial dynamics and stochastic behaviors.

This research introduces a novel methodology for integrating Cellular Automata
(CA) models with existing CAE platforms, specifically focusing on converting data
representations between COMSOLMultiphysics and the CATLIB cellular automata
library. The study addresses critical interoperability limitations by developing a
specialized converter tool that enables seamless data translation between different
computational paradigms. Utilizing COMSOL’s Java API and the Python MPh
library, the research demonstrates a robust approach to extracting and transforming
complex geometrical and physical simulation data. The proposed solution aims to
enhance the accessibility of cellular automata modeling techniques for engineers
and researchers with varying levels of technical expertise.

Key contributions include a framework for comparative analysis between tra-
ditional CAE solutions and cellular automata models, a methodology for bridg-
ing rule-based and equation-based solvers, and a proof-of-concept implementation
that showcases the potential of integrating alternative modeling approaches. The
research successfully extracts critical simulation parameters, including geometric
boundaries, mesh configurations, and initial conditions, from COMSOL models
for subsequent CA processing. Experimental validation using a turbulence for-
mation simulation demonstrated the converter’s capability to handle complex en-
gineering scenarios. The methodology not only addresses current limitations in
computational modeling but also provides a foundation for more flexible and com-
prehensive approaches to engineering-physics simulations. This work represents a
significant advancement in computational modeling techniques, offering a standard-
ized approach to integrating cellular automata models into mainstream engineering
simulation platforms. The research has broader implications for interdisciplinary
innovation, potentially transforming how engineers and researchers approach the
modeling of complex, dynamic systems.

Keywords: Cellular Automata, Computer-Aided Engineering, COMSOL Multi-
physics, Simulation Modeling, Data Conversion

34 A.A. Korolev

Introduction

CAE systems have become indispensable tools for modeling complex en-
gineering and physical processes. However, these systems face significant
limitations when addressing highly nonlinear, discrete, and stochastic phe-
nomena. Traditional numerical methods, such as Finite Element Methods
(FEM) and Finite Volume Methods (FVM), struggle to accurately simulate
dynamic systems characterized by intricate spatial interactions and complex
behavioral patterns.

CA models offer a promising alternative approach to these computa-
tional challenges. With their ability to represent localized interactions and
model emergent behaviors, CA models can provide insights into systems
that conventional CAE tools find intractable. Despite their potential, the
integration of CA models into mainstream engineering simulation platforms
remains a critical technological barrier.

This research addresses this gap by developing a novel converter and sim-
ulation tool designed to facilitate seamless interoperability between COM-
SOL Multiphysics and CATLIB, a cellular automata library. The primary
objectives are to:

1. Enable smooth data translation between different modeling paradigms.

2. Enhance the accessibility of CA modeling techniques for engineers with
limited technical expertise.

3. Provide a framework for comparative analysis between traditional and
cellular automata-based simulation approaches.

1. Overview of CAE Systems for Engineering and Physics

The integration of CA models with CAE systems presents both an opportu-
nity and a challenge in modern engineering-physics simulations. To contex-
tualize the proposed research, this section reviews the principles, functions,
and limitations of current CAE systems, as well as the applications and
challenges associated with CA models. This dual focus highlights the tech-
nological gap this research aims to address.

1.1. Key functions of CAE systems based on differential equation
solvers. Modern CAE systems offer a broad range of functionalities for
modeling engineering and physical processes. At their core, these systems
rely on numerical methods for solving partial differential equations (PDEs),
which describe the dynamics and behavior of various systems in space and
time. The primary functions of such systems include:

1. Geometry construction and processing.

2. Mesh generation.

Methodology for using CA simulators in CAE systems 35

3. Defining physical parameters and boundary conditions.

4. Numerical solvers for analysis.

5. Post-processing and visualization of results.

6. Support for multi-physics and multi-tasking models.

7. Integration with High-Performance Computing (HPC).

These functionalities make CAE systems versatile tools for addressing
complex engineering and scientific problems. However, as studies (e.g.,
Bandman’s paper [1]) suggest, many challenges related to nonlinear or highly
discrete processes remain difficult for classical numerical methods. This
highlights the necessity for alternative approaches, such as cellular automata
modeling, to complement traditional CAE solutions.

1.2. Examples and Analysis of Popular CAE Systems. Here, we
examine several leading CAE platforms, their distinctive features, supported
formats, and areas of application.

MFEM is a lightweight, scalable C++ library tailored for finite element
methods. Its modular design supports integration with a variety of mesh
formats such as VTK, Gmsh, and CUBIT, making it versatile for mesh
generation and visualization. With output options like ParaView (VTU),
VisIt, and GLVis, MFEM excels in offering seamless visualization pathways
for high-performance simulations in structural mechanics and thermal anal-
ysis.

GetFEM stands out for its emphasis on versatility in finite element anal-
ysis. Its compatibility with widely used formats like Gmsh and Ansys for
mesh input, combined with output options such as VTK and OpenDX, en-
sures smooth integration into diverse workflows. This flexibility makes Get-
FEM particularly suitable for research-driven projects requiring customized
solutions.

The MOOSE framework is designed for multiphysics simulations, of-
fering extensive support for mesh formats like ExodusII, Abaqus, and Tec-
plot, among others. Its output capabilities, including VTK (.pvd, .vtu) and
XDMF/HDF5, facilitate robust post-processing and visualization. MOOSE’s
strength lies in its ability to couple various physical phenomena, making it
a powerful tool for solving complex engineering problems.

OpenModelica specializes in dynamic system simulations, particularly
for mechanical, electrical, and hydraulic systems. Using Modelica (.mo) and
XML-based FMI (.fmu) formats for model representation, it offers a stan-
dardized approach to model exchange and simulation. With output options
such as MATLAB (.mat), CSV, and plain text, OpenModelica integrates
well with popular data analysis tools like Python and MATLAB.

36 A.A. Korolev

SU2 is a comprehensive open-source computational fluid dynamics (CFD)
tool with strong capabilities in aerodynamic shape optimization. Supporting
formats like SU2 grid (.su2), CGNS, and OpenFOAM, it facilitates efficient
integration into CFD workflows. SU2’s robust visualization support, includ-
ing Tecplot (.dat) and ParaView (.vtk), makes it an excellent choice for fluid
dynamics and multidisciplinary optimization tasks.

FEniCS is a flexible computing platform for solving partial differential
equations. It supports numerous mesh formats, such as Gmsh, XDMF,
and Triangle, and employs Python-based scripting for problem definition,
enhancing accessibility for users. Its output capabilities through ParaView
and VTK further extend its application in finite element analysis, making
it a favorite in academic and research settings.

Elmer offers robust multiphysical simulation capabilities, particularly
in electromagnetics, structural mechanics, and fluid dynamics. With mesh
formats such as Gmsh and unstructured VTK, and output options including
Tecplot and ParaView, Elmer provides flexibility and precision for advanced
simulation needs.

Deal.II is a C++ library focused on adaptive finite element methods.
Its compatibility with formats like Gmsh, Tecplot, and VTK, along with
CAD format integration via IGES and STEP, makes it a powerful tool for
developing scalable simulations. Its emphasis on adaptive meshing ensures
efficiency in solving large-scale problems with complex geometries.

Code-Aster, coupled with its pre- and post-processing environment
Salome-Meca, is a prominent open-source solution for structural mechan-
ics and coupled physics simulations. Supporting various formats for mesh
and results representation, it caters to demanding industrial applications,
including thermal and fluid flow analysis.

The diversity of CAE systems reflects the varied needs of modern en-
gineering and scientific research. Each platform offers unique capabilities
and supports a range of formats, enabling users to choose the tools that
best match their simulation requirements. From general-purpose solvers
like MFEM and MOOSE to specialized platforms like SU2 and OpenMod-
elica, these systems continue to drive innovation and efficiency in modeling
and simulation.

1.3. Limitations and bottlenecks in current CAE systems for mod-
eling complex systems. Despite the extensive capabilities of modern
CAE systems, they encounter several limitations that hinder their effec-
tiveness in modeling complex engineering and physical processes. These
bottlenecks encompass methodological challenges, performance constraints,
and interoperability issues, which collectively affect their utility in advanced
simulations.

Methodology for using CA simulators in CAE systems 37

Methodological challenges. CAE systems predominantly rely on
numerical solvers like FEM and FVM. While effective for problems with
smooth solutions, these methods face significant hurdles in addressing:

1. Highly nonlinear systems: Turbulent flows, multiphase systems, and
reaction-diffusion processes demand substantial computational re-
sources to ensure stability and convergence. Traditional numerical
approaches often struggle with inefficiencies and inaccuracies when
tackling such nonlinear complexities.

2. Discrete and stochastic phenomena: Problems governed by discrete
dynamics or stochastic behaviors fall outside the typical scope of nu-
merical solvers. Cellular automata, which excel in modeling such phe-
nomena, require fundamentally different computational frameworks
that are rarely supported by conventional CAE tools [1, 2].

3. Performance issues: High computational costs and parallelization bot-
tlenecks.

4. Diverse data formats: Proprietary data formats (e.g., CGNS, VTK)
used by CAE systems create challenges for cross-platform data ex-
change, often leading to data loss during conversions.

5. Scalability and adaptation challenges.

The role of cellular automata in addressing limitations. These
challenges highlight the need for alternative methods to complement tra-
ditional CAE approaches. Cellular automata offer distinct advantages in
handling discrete, nonlinear, and stochastic processes. Their inherent scal-
ability and adaptability make them well-suited for integration with modern
visualization and data management tools. Moreover, CA align effectively
with the demands of high-performance computing, offering viable solutions
for large-scale and complex simulations [3].

While mathematical physics and partial differential equations form the
backbone of traditional CAE systems, they face growing difficulties in man-
aging the increasing complexity of engineering problems. Implicit meth-
ods, typically used for stationary problems, are stable but challenging to
parallelize, whereas explicit methods for non-stationary problems are eas-
ier to parallelize but limited by strict stability constraints, such as requiring
smaller time steps. These limitations align explicit methods with the behav-
ior of continuous cellular automata, positioning CA as a robust alternative
for specific applications [2].

By leveraging the unique capabilities of CA, future CAE systems can
overcome existing limitations, paving the way for more efficient and accurate
modeling of complex engineering phenomena.

38 A.A. Korolev

1.4. Advantages and disadvantages of using CA for engineering
modeling. Unlike numerical methods that approximate PDE solutions,
CA models provide an entirely different paradigm. This distinction is par-
ticularly relevant for highly nonlinear systems, where traditional numerical
methods struggle with complexity, and CA models can offer simpler, more
effective alternatives [2,3]. However, this advantage is context-dependent, as
the comparative utility of CA and PDE-based methods varies significantly
by application.

Several critical advantages of CA modeling make it attractive. First, CA
models eliminate rounding errors, as their state representations are based on
Boolean vectors. This ensures that all computational bits are equally signifi-
cant, avoiding the cumulative inaccuracies that iterative numerical methods
may introduce. Additionally, CA models are memory-efficient, particularly
for large datasets, as Boolean states occupy minimal storage. Their inher-
ent parallelism also supports extensive scalability, enabling domain decom-
position across any number of processors without performance degradation.
Moreover, boundary conditions in CA models are easier to implement, even
for complex geometries like porous media or curved structures, as they are
represented by specialized boundary cells with transition rules [4].

Despite these strengths, CA modeling is not without limitations. One
significant issue is automaton noise, which arises from the discrete represen-
tation of states. While this can often be mitigated with sufficient averaging
radii, it remains a concern in high-resolution models. Furthermore, CA lacks
formal predictive tools for designing transition functions, making it difficult
to synthesize these functions to achieve specific desired outcomes. This lim-
its the ease with which CA models can be systematically tailored to match
the behavior of physical systems.

Lastly, the theoretical foundation of CA, while promising, is still in its
nascent stages compared to the well-established body of knowledge support-
ing numerical methods. The most critical insight when comparing CA with
traditional methods is that CA does not merely approximate PDEs but of-
fers an alternative framework, better suited to certain classes of problems,
especially those characterized by non-reversible, nonlinear dynamics [5].

1.5. Related research done in Novosibirsk State University. This
work presents the development of algorithms for integrating geometric,
boundary condition, and visualization data into CA framework implemented
as a plugin for the FreeCAD software. These algorithms enable the seam-
less translation of model geometry and simulation parameters into the CA
computational domain enhancing the capabilities of FreeCAD for physical
process modeling [6].

The work focuses on algorithms for converting geometric data into CA
models, specifically targeting integration with the LOGOS CAE system.

Methodology for using CA simulators in CAE systems 39

The developed methods facilitate the translation of raster images and fi-
nite element geometries into the FHP-MP CA framework enabling efficient
simulation setup [7].

2. Problem statement

2.1. Problem description. The integration of CA models into CAE sys-
tems faces significant challenges due to a lack of dedicated tools and stream-
lined processes. Existing CAE systems, such as COMSOL Multiphysics,
primarily rely on solvers based on differential equations, which often do
not support the flexible, rule-based computation inherent to CA models.
This creates a technological and operational gap, leaving engineers and re-
searchers without user-friendly solutions to leverage the strengths of both
CA and CAE systems.

This deficiency limits the practical adoption of CA modeling techniques
in engineering-physics simulations, where CA models could provide innova-
tive approaches to solving dynamic system problems. A seamless method for
integrating CA with established CAE systems is urgently needed to bridge
this gap, especially for users with limited technical expertise in programming
or CA-specific methodologies.

2.2. Research objectives:

1. Design and develop a converter and simulation tool that enables smooth
interoperability between COMSOL and CATLIB.

2. Ensure accessibility for beginners in CAE systems, providing them
with intuitive tools to adopt CA-based modeling techniques without
extensive technical overhead.

3. Facilitate comparative analysis by enabling researchers to directly eval-
uate CA models alongside solutions generated by conventional CAE
systems, fostering deeper insights into their relative strengths and lim-
itations.

2.3. Significance of the research. This research contributes to both the
scientific and engineering communities by providing a standardized method-
ology for integrating CA with CAE systems. The proposed solution aims
to:

1. Enhance the usability and flexibility of CA models for practical en-
gineering applications, making them accessible to a broader range of
users.

2. Address a critical gap in the integration of rule-based and equation-
based solvers, promoting interdisciplinary innovation in engineering-
physics simulations.

40 A.A. Korolev

By improving workflows for researchers and engineers, this study paves the
way for more effective utilization of CA in solving complex, dynamic prob-
lems across various scientific and engineering domains [6–8].

3. Integration of CA with CAE System COMSOL

3.1. Requirements definition. The primary objective is to develop a
converter capable of translating data representations from COMSOL Mul-
tiphysics simulations into a format compatible with the CATLIB cellular
automata library. Architecturally, this converter replaces COMSOL’s solver
with the CATLIB solver. Additionally, the converter must function bidi-
rectionally, enabling data transformation back into COMSOL’s expected
format for further processing (Figure 1).

Figure 1. Diagram with the outline of the proposed architecture

This converter serves as both a pre- and post-processing tool for COM-
SOL’s MPH models. Ideally, the solution should seamlessly integrate
CATLIB within COMSOL, offering users an uninterrupted modeling ex-
perience while leveraging CATLIB’s solver capabilities.

3.2. Structure of MPH models. COMSOL’s MPH/MPHBIN files were
analyzed to understand their structure and content. The key elements in-
clude:

� Model geometry: Definitions of geometric forms, parameters, and in-
formation on various regions and boundaries.

� Simulation settings: Selected physical phenomena, equations, mesh
configurations, and numerical methods.

� Initial and boundary conditions: Specifications for initial parameter
values and boundary equations.

� Simulation results: Data distributions (e.g., fields, temperatures, pres-
sures) and visualizations.

The proprietary binary nature of these file formats complicates direct ma-
nipulation, necessitating efficient parsing techniques or API usage.

Methodology for using CA simulators in CAE systems 41

3.3. Approaches considered:

Manual parsing of MPH files –– an initial approach involved manually
loading and parsing MPH files line-by-line as text. While this avoided re-
liance on external APIs, it lacked flexibility and compatibility with COM-
SOL’s binary MPHBIN files.

Explicit export by COMSOL users –– exporting COMSOL data to open
formats such as XML or CSV for subsequent processing. However, this
added complexity and was limited in scope, as not all required data is ex-
portable to CSV.

Using the COMSOL Java API–– the final and preferred approach is the
utilizing COMSOL’s official Java API. Its advantages include robust doc-
umentation and flexibility. Challenges encountered during implementation
are discussed in later sections.

3.4. Selection of COMSOL version. The integration was focused ini-
tially on COMSOL version 4.3a due to licensing considerations. However,
significant compatibility issues arose between the required Java environment
and the API. These included challenges with javac compiler versions and
consistent library dependencies. To address these challenges, we shifted to
the newer versions of COMSOL (e.g., 6.2). Major differences between API
versions required adapting methods for model loading, data extraction, and
content manipulation.

3.5. Selected libraries and their benefits. The Python library MPh
was chosen as the primary tool for working with the COMSOL Java API
due to several advantages:

� Simplified Java environment setup: MPh utilizes Jpype to bridge
Python with Java, encapsulating the complexities of Java setup.

� Dependency management: Installation of required libraries, such as
NumPy, is streamlined through Python’s pip package manager.

� API reflection: MPh directly mirrors COMSOL’s Java API function-
ality, simplifying development.

� Reproducibility: The use of Python enhances the reproducibility and
portability of the solution.

3.6. Proof-of-concept program and data extraction. A proof-of-
concept (PoC) program was tested using COMSOL’s built-in model library.
A specific model simulating turbulence formation around a vertical cylin-
der in a laminar flow was used (Figures 2 and 3). This example provides
valuable insights into MPH file structure and MPh library functionality.

42 A.A. Korolev

Figure 2. The raw model mesh displayed in COMSOL

Figure 3. The raw mesh extracted and reconstructed with our software

Extracted data from the PoC program included:

� Geometries: Rectangles, circles, unions, and more.

� Physics: Fluid properties, initial values, and boundary conditions for
laminar flow simulations.

� Meshes: Raw vertex coordinates and structural elements.

� Plots: Velocity surfaces and particle tracing.

� Boundary conditions: Inlets, outlets, and walls.

The code implements a method to extract boundary condition data (in-
lets, outlets, and walls) from a COMSOL MPH model:

def extract_boundary_conditions(self):

"""Extract boundary condition data such as inlets and outlets."""

data = { ’inlets’: [], ’outlets’: [], ’walls’: [] }

edges = self.get_edges_vertices()

for tag in self.spf.feature().tags():

feature = self.spf.feature(tag)

bc_type = feature.getType()

selection = feature.selection()

entities = selection.entities()

For each entity, check its boundary condition type and get

the corresponding coordinates for entity in entities:

Adjust entity index for zero-based one

entity_index = entity - 1 # COMSOL returns 1-based indices

if entity_index < 0 or entity_index >= len(edges):

continue # Skip if the entity is out of bounds

coords = edges[entity_index] # Fetch edge coordinates

if bc_type == ’InletBoundary’:

data[’inlets’].append({’tag’:tag, ’coordinates’:coords})

elif bc_type == ’OutletBoundary’:

Methodology for using CA simulators in CAE systems 43

data[’outlets’].append({’tag’:tag, ’coordinates’:coords})

elif bc_type == ’WallBC’:

data[’walls’].append({’tag’:tag, ’coordinates’:coords})

return data

The function scans through boundary features defined in the simula-
tion physics (i.e. single phase flow). For each tagged feature, it checks the
boundary condition type (e.g., inlet, outlet, wall) and retrieves the geomet-
ric entities (edges) associated with it. It then maps these entities to their
corresponding coordinates using precomputed edge-vertex data. Depending
on the boundary type, it stores the coordinates along with the tag in cat-
egorized lists (inlets, outlets, walls). The result is a structured dictionary
containing all relevant boundary condition data, ready for downstream use
in cellular automata or mesh processing.

The geometric boundary data was retrieved in the following form:

Inlets: 1 item

Tag: inl1, Coordinates: ((0.0, 0.0), (0.0, 0.41))

Outlets: 1 item

Tag: out1, Coordinates: ((2.2, 0.41), (2.2, 0.0))

Walls: 6 items

Tag: wallbc1, Coordinates: ((2.2, 0.0), (0.0, 0.0))

Tag: wallbc1, Coordinates: ((0.0, 0.41), (2.2, 0.41))

...

As a result of research and experiments for integrating cellular automata
with CAE systems, we have successfully fetched not only raw mesh data but
also boundary condition information, including the locations and identifiers
of inlets and outlets, from COMSOL models. This milestone enables accu-
rate mapping of boundary-driven dynamics into Cellular Automata repre-
sentations, which is crucial for modeling fluid behavior and domain transi-
tions.

4. Results

4.1. Experimental setup. To evaluate the effectiveness of the proposed
methodology for integrating CA with CAE models, a series of experiments
were conducted using COMSOL Multiphysics. The selected models focused
on fluid dynamics, particularly laminar flow around a cylindrical obstacle––
a scenario where CA-based methods can enhance the simulation of localized
effects.

The proof-of-concept software was tested against these models to assess
its ability to extract and translate simulation data, especially boundary-
related information, for use in CA systems.

The following criteria were used for evaluation:

� Integration efficiency: Time taken to parse MPH model files and
generate CATLIB-compatible data.

44 A.A. Korolev

� Boundary fidelity: Accuracy in identifying and categorizing simu-
lation boundaries such as inlets, outlets, and walls.

� Representation accuracy: Degree to which geometric and physical
data aligned between COMSOL and the CA model.

� Solver comparison: Behavioral similarity of results between COM-
SOL’s PDE-based solver and CATLIB’s CA-based solver.

4.2. Findings:
Extraction performance:

� The converter successfully parsed MPH files and extracted geometry,
mesh data, and physical properties.

� Critically, the software was able to extract boundary condition entities,
including precise coordinates and tags for inlets, outlets, and walls,
using the implemented boundary feature parsing routine.

� The boundary extraction method demonstrated robustness across dif-
ferent test cases, ensuring that all relevant flow interfaces were cor-
rectly mapped to the CA domain.

Converter speed and efficiency:

� End-to-end conversion (including mesh and boundary extraction) com-
pleted in under 5 seconds per model on average.

� Minimal preprocessing was required once the MPH file was loaded,
suggesting good scalability for larger model sets.

Boundary representation:

� All major boundary types –– InletBoundary, OutletBoundary, and
WallBC–– were successfully extracted and labeled.

� Coordinate mapping was consistent with COMSOL’s edge definitions,
and the software handled index alignment issues (e.g., 1-based vs.
0-based indexing) effectively.

� Extracted boundaries were visualized independently to validate cor-
rectness, showing high overlap with the original model representations.

Conclusion

This research successfully demonstrated a novel approach for bridging the
gap between traditional Computer-Aided Engineering systems based on dif-
ferential equations and Cellular Automata models, which use rule-based,
localized computation. By developing a converter capable of extracting and
transforming data from COMSOL Multiphysics to CATLIB, we tackled sev-
eral critical challenges in achieving meaningful interoperability between fun-
damentally different simulation paradigms.

Methodology for using CA simulators in CAE systems 45

Key contributions:

� Interoperability framework: We established a robust and extensi-
ble methodology to translate CAE model data—including geometry,
mesh, and physics—into a form suitable for cellular automata simula-
tions.

� Boundary condition extraction: A major technical milestone was
the successful extraction of inlet, outlet, and wall boundary condition
data from COMSOL MPH files. This resolves a key limitation in past
efforts and allows CA models to accurately reflect physical constraints
at simulation interfaces [4, 6, 7].

� Tooling and integration: Using the COMSOL Java API and Python
MPh library, we built a flexible toolchain that automates the extrac-
tion of simulation metadata and geometric detail for CA integration.

� Accessibility: The converter lowers the technical barriers for re-
searchers and engineers by streamlining the process of using CAmodels
as a complementary or alternative simulation approach.

Practical implications. The developed tool supports:

� Direct comparison between PDE-based solvers and CA models on
shared geometries and boundary conditions.

� Integration of CA techniques into existing engineering workflows, en-
abling exploration of localized, nonlinear, or emergent phenomena that
are difficult to capture with conventional solvers.

� A standardized path for extending CA modeling to domains tradition-
ally dominated by finite element or finite volume methods [3, 5, 8].

Limitations and future work. While the current implementation pro-
vides a solid foundation, several areas remain open for future research:

� Expanding support for additional CAE platforms and export formats.

� Improving the precision of data transformation, especially for more
complex 3D and multiphysics models.

� Developing higher-level tools and interfaces to streamline user inter-
action and enable model customization within the CA framework.

Broader impact. This work contributes to the evolution of simulation
technology by offering a practical, flexible way to integrate discrete CA
models into the established CAE ecosystem. It emphasizes the value of
cross-paradigm thinking in engineering and physics modeling and opens up
new possibilities for simulating systems that exhibit complex, localized, or
non-continuous behavior.

46 A.A. Korolev

By enabling more comprehensive, modular, and accessible simulation
tools, this research lays important groundwork for future innovation across
domains ranging from fluid dynamics and materials science to biological
systems and distributed computing.

References

[1] Bandman O. Implementation of large-scale cellular automata models on
multi-core computers and clusters // Int. Conf. High Performance Com-
puting and Simulation (HPCS), Helsinki, Finland. –– 2013. –– P. 304–310.
DOI:10.1109/HPCSim.2013.6641431.

[2] Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitu-
tion Algorithm. Theory and Application / World Scientific Publ. –– 1994.
DOI:10.1142/2369.

[3] Medvedev Yu.G. Lattice gas cellular automata for a flow simulation and their
parallel implementation // Parallel Programming: Practical Aspects, Models
and Current Limitations. Series: Mathematics Research Developments / Ed.:
Tarkov M.S. Hauppauge. –– New York: Nova Science Publishers, Inc., 2014. ––
P. 143–158.

[4] Kireev S., Trubitsyna Yu. Software implementation of asynchronous and syn-
chronous cellular automata with maximum domino tiles coverage // Bull.
Novosibirsk Comp. Center. Ser. Computer Science. –– Novosibirsk, 2022. ––
Iss. 46. –– P. 13–25.

[5] Von Neumann J. General and Logical Theory of Automata.––New York: Wiley,
1951; J. Von Neumann. Collected works // Hixon Symposium. –– Vol. V. ––
1948.–– P. 288–328.

[6] Belyavtsev B.V. Development of an add-on to the FreeCAD system for interfac-
ing with the library of cellular automata topologies // Information Technology.
Scientific Engineering: Proc. 62nd International Scientific Student Conference.
April, 17–23, 2024 / Novosibirsk State University. –– Novosibirsk: IPC NSU,
2024.–– P. 151 (In Russian).

[7] Burnyshev E.K. Software system for cellular automata modeling of gas flows //
Bull. Novosibirsk Comp. Center. Ser. Computer Science.––Novosibirsk, 2022.––
Iss. 48.

[8] Pogudin Y., Bandman O. Simulating cellular computations with ALT: A tuto-
rial // LNCS.–– Springer, 1997. –– Vol. 1277. –– P. 424–435. DOI:10.1007/3-540-
63371-5 52.

