
Bull. Nov. Comp.Center, , 43 (2019), 15�19
c© 2019 NCC Publisher

Notes on implementing the ksmt-solver∗
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Abstract. In this paper we report on new black-box and white-box approaches
implemented in ksmt�solver for checking satis�ability of non-linear constraints over
the reals. These approaches are applicable to a large number of constraints involv-
ing computable non-linear functions, piecewise polynomial splines, transcendental
functions and beyond. A prototypical implementation has been evaluated on several
non-linear SMT-LIB examples and the results have been compared with state-of-
the-art SMT solvers.
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1. Introduction

Non-linear constraint solving naturally arises in the development of formal
methods for veri�cation of safety critical systems, program analysis and in-
formation management. Implementations of formal methods are widely used
to approve in advance that designed systems satisfy all speci�cation require-
ments, such as reliability, safety and reachability. Historically, there have
been two main approaches to deal with non-linear constrains: the symbolic
one originated by Tarski's decision procedure for the real closed �elds [9] and
the numerical one based on interval constraint propagations [1]. It is well
known that both approaches have their strength and weakness concerning
completeness, e�ciency and expressiveness. Nowdays, merging strengths
of symbolical and numerical approaches is one of the challenging research
aria in theoretical and applied computer science. In our recent theoretical
framework [2] we integrated symbolic [5] and numerical techniques [8] to
improve e�ciency and to reduce the wrapping e�ect. This approach has
been motivated by extensions of CDCL-style reasoning into domains beyond
propositional logic such as linear [6, 7, 5, 4] and polynomial constraints [3].
This theoretical background has been realised in the ksmt-package by im-
plementing black-box and white-box approaches. Both of them have been
developed in the con�ict driven clause learning style and are applicable to a
wide class of non-linear constraints.
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MU 1801/5-1, the European Union's Horizon 2020 research and innovation programme
under the Marie Skªodowska-Curie grant agreement No 731143 and RFBR-JSPS project
number 20-51-50001.
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Figure 1. Black-box SAT-based implementation.

The ksmt solver is an open source (LGPL-3) publicly available at
http://informatik.uni-trier.de/~brausse/ksmt. It supports a large sub-
set of QF_LRA and QF_NRA logics as de�ned in the SMT-LIB standard1 and
contains a DPLL-based SAT solver, an arithmetical theory solver and tan-
gent space constructors integrated in black-box and white-box ksmt solvers.
These components also can be used as independent systems.

2. Black-box SAT-based implementation

In the ksmt-package, the black-box approach integrates a DPLL-based SAT
solver and an arithmetical theory solver that handles systems of inequalities
over the reals.

Figure 1 schematically shows this black-box approach. After standard
normalisation and preprocessing of an input formula each atomic formula
(being an inequality over the reals) is abstracted by a Boolean variable re-
sulting in a propositional formula. The propositional formula is processed
by the SAT-solver to produce a Boolean assignment to the atomic formulas
that is consistent on the propositional level.

This assignment now also de�nes a system of inequalities over the reals
which is forwarded to the arithmetical theory solver. This solver, in turn,
proceeds to check the satis�ability of the received system. If the arithmetical

1http://smtlib.cs.uiowa.edu/
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theory solver detects satis�ability, it provides a solution, i.e., an assignment
for the real variables satisfying the system. Otherwise, if the real solver
detects unsatis�ability, it generates a propositional unsat core formula de-
scribing a su�cient reason for the inconsistency, possibly even with the use
of new derived inequalities (which translate to new propositional variables).
The negation of this unsat core is added to the SAT solver's state so that
propositional models containing the same cause of inconsistency will not be
considered again by the SAT solver.

The main steps of the arithmetical theory solver are Con�ict Resolutions
and Linearisations. They are similar to the ones in the white-box approach
and can be found in Section 3.

The speci�c features are the following: preprocessing input formulas into
linear separated form, usage of grids to reduce the necessity for new Boolean
variables, con�ict driven clause learning loop, solving systems by combina-
tion of symbolic and numerical computations in con�ict driven style, for-
getting linear resolvents similar to forgetting clauses in SAT solvers, linear
resolution on predicates.

3. White-box calculus based implementation

In the ksmt-package, the white-box approach is realised by implementing
the ksmt calculus loop proposed in [2]. Figure 2 schematically shows this
approach.
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Figure 2. ksmt calculus loop.

The ksmt algorithm in our implementation works as follows. Given a
set of non-linear constraints, we �rst separate the set into linear and non-
linear parts (�SLF� in Figure 3). Then we incrementally extend a candidate
solution into a solution of the whole constraint set (rule A), and when such
an extension fails, we resolve the con�ict by generating a lemma excluding a
region which includes the falsifying assignment and apply backjumping (rule
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Figure 3. Core of ksmt calculus. Loop terminates in red notes.

B). There are two types of con�icts: between linear constraints, which are
resolved in a similar way as in [6] (rule R), and non-linear con�icts involving
non-linear constraints, these are resolved by local linearisations (rule L).

One of the important properties of our algorithm is that all generated
lemmas are linear,9 and hence the non-linear part of the problem remains
unchanged during the search. In other words, our algorithm can be seen
as applying gradual linear approximations of non-linear constraints by local
linearisations guided by solution search in CDCL-style.

The speci�c features are the following: preprocessing input formulas into
linear separated form, independency from a SAT solver, con�ict driven clause
learning loop, solving systems by combination of symbolic and numerical
computations in con�ict driven style, combinations of model-guided solution
search with targeted linearisations for resolving non-linear con�icts, forget-
ting linear resolvents similar to forgetting clauses in SAT solvers, con�ict
detection on clauses, linear resolution on clauses, nondeterministic choices
between linear con�ict resolutions and linearisations.

4. Conclusions and future work

We presented the black-box and white-box loops implemented in the ksmt-
package for checking satis�ability of non-linear constraints. We already have
tangent space constructors for computable analytical functions including ex-
ponential and trigonometric functions as well as piecewise polynomial splines
and beyond. The next steps will be enlarging of the tangent space construc-
tor class in order to deal with richer classes of continuous constraints, extend-
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ing the applicability of our implementation and a more extensive evaluation.
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