
Bull. Nov.Comp.Center, Comp.Science, 14 (2001), 19{27c 2001 NCC PublisherMinimization of nonlinear functionswith linear restrictions�E.A. Kotel'nikov, G.I. ZabinyakoThe algorithms for minimization of large-dimension functions with linear con-straints with allowance for sparseness of the limitation matrices are considered.A special case of the quadratic programming is emphasized. The algorithms havebeen implemented as a package of software programs to be used in the operationalenvironments DOS, UNIX.1. AlgorithmsThe following problem is considered:min f(x) (1)under the conditions Ax = b; (2)� � x � � (3)with the initial point x0. Here f is a function (not necessarily smooth), thevectors �, �, x, x0 2 Rn, b 2 Rm, A is m � n matrix. The initial pointx0 may not satisfy limitations (2), (3). In this case, we �nd an admissiblepoint, closest, in a sense, to x0. If f is nonconvex, the approximations to aconditional stationary point are constructed.For the solution of problem (1){(3), it is proposed to use the reducedgradient method, which can be represented as a combination of elementsof the modi�ed simplex-method and one of the algorithms of unconditionalminimization [1].In connection with the fact that the object function is nonlinear, thecurrent point of the optimizing sequence xk is not necessarily located atthe vertex of the polynomial speci�ed by restrictions, therefore the numberof components of the point xk having the values �i < xki < �i can exceedm. Then, in addition to the basis and the non-basis variables used in thesimplex-method, we will consider the so-called superbasis variables. Let xB ,xS , xN be vectors of the basis, the superbasis and the non-basis variables,�Supported by the Russian Foundation for Basic Research under Grants 99-07-90422,01-07-90367.



20 E.A. Kotel'nikov, G.I. Zabinyakorespectively, and B, S, N be matrices made up of columns of the matrix Aaccording to partitioning of components of the point x, B is a non-degeneratem�m matrix. Then xB = B�1(b� SxS �NxN): (4)If on a certain segment of the computational process the mesh size alongthe direction of the shift pk up to the minimum point of the function fis smaller than the mesh size up to the parallelepiped boundary, given byrestrictions (3), the content of the basis, the superbasis and the non-basisvariables does not change. When solving the subproblem involved, the non-basis variables preserve their values, and the basis and the superbasis vari-ables take the values within their boundaries, in this case according to (4)the basis variables are dependent on the superbasis variables. LetF (xS) = f(xB; xS; xN) = f(B�1(b� SxS �NxN); xS ; xN);then the process of solving the subproblem reduces to minimization of F (xS)with simple restrictions �B � xB � �B, �S � xS � �S , where �B , �B, �S ,�S are the vectors whose components are the values �j , �j correspondingto the basis and the superbasis variables. The gradient h of the functionF is called the reduced gradient of the function f , and the matrix H ofthe second derivatives of the function F { the reduced matrix of the secondderivatives of the function f . Denote W = B�1S, where V = [�WT I 0],V is s � n matrix consisting of three submatrices: WT corresponds to thebasis variables, I is the unit matrix, and 0 is zero matrix corresponding tothe superbasis and the non-basis variables, respectively. Then, accordingto [1] hk = V gk is the reduced gradient at the current point xk, wheregk = rf(xk); Hk = V GkV T is the reduced matrix of the second derivativesof the function f ; and Gk is the matrix of the second derivatives of thefunction f at the point xk.For the solution of a subproblem, three methods of unconditioned mini-mization are provided: the conjugate gradient or the quasi-Newton methodcan be used for a smooth object function, r-algorithm { for a non-smoothfunction. The mesh size along the direction pk to the minimum point ofthe function f can be found with the help of the quadratic or the cubicinterpolation; the so-called adaptive algorithm is provided for a non-smoothfunction.A subproblem is considered to be solved if the value khk1 is small. The�rst direction pS of any subproblem is a reduced antigradient, i.e., pS = �h.1.1. Conjugate gradients algorithm. Let an object function f(x) be atwice di�erentiable function of the vector argument x 2 Rn. Approximationsto the minimum are constructed on the basis of the iterative process:



Minimization of nonlinear functions with linear restrictions 21p0 = �rf(x0);pi = �rf(xi) + �ipi�1 + ipt;xi+1 = argmin�>0 f(xi + �pi);where rf(xi) is the gradient f at the current point xi, pi�1 and pt are the di-rections used in previous iterations, �i and i are coe�cients. In a standardscheme of the conjugate gradient method, the direction of an antigradientis used in restart iterations at i = n; 2n; : : : . In [2], a linear conjugate gra-dients algorithm (for the quadratic functions f), is substantiated, in whichthe other vector is used for restart. For a general case, this algorithm is de-veloped in [3]. When developing the program, we made use of the improvedalgorithm [4] with a non-standard restart.A correct application of the non-standard renewal makes it possible togain some progress when solving ill-conditioned problems by the conjugategradients method.1.2. Quasi-Newton algorithm. In the quasi-Newton algorithm, the re-current k-th direction of the descent pk is found from the system of equationsBkpk = �rf(xk);where Bk is the current estimation of the second derivatives matrix of thefunction f(x). The most e�cient quasi-newtonian algorithms are obtainedwith the use of the estimations Bk of the BFGS formula for the recalculation:Bk+1 = Bk + 1(rf(xk); pk)rf(xk)rfT (xk) + 1�k(Y k; pk)Y k(Y k)T ;where Y k = rf(xk+1)� rf(xk), and �k is a mesh size along the directionpk. In [5], there is proposed an e�cient procedure of supporting in itera-tions the representation of the matrices Bk in the factorized form Bk =LkDk(Lk)T , where Lk is the left triangular matrix with 1 on the main diag-onal, Dk is the diagonal matrix. Application of such a factorized form allowsensuring the strict positive de�niteness of the matrices Bk with allowancefor the rounding o�.1.3. r-algorithm. To minimize non-di�erentiable functions, algorithms ofthe subgradient form with the space extended towards the di�erence of twosubsequent subgradients (r-algorithms) proved to be most e�ective [6].Let f be a function to be minimized, and @f(x) be its subgradient atthe point x 2 Rn. At the beginning of the process we set the matrix B0equal to the unit n � n matrix I and the coe�cient of extension � > 0(usually 2 � � � 3). The displacement from the initial point x0 is done in



22 E.A. Kotel'nikov, G.I. Zabinyakothe direction opposite @f(x0). Further, at any k-th iteration of r-algorithm,the following values are sequentially determined:Y k = @f(xk)� @f(xk�1); (5)rk = (Bk)TY k; (6)�k = rkkrkk2 ; (7)Bk+1 = Bk(I + (��1 � 1)�k(�k)T ); (8)pk = (Bk+1)T@f(xk); (9)xk+1 = xk � �kBk+1 pkkpkk ; (10)where �k > 0 is the displacement at the k-th iteration. It is evident from (5){(10) that it appears possible to use the symmetric matrices Hk = Bk(Bk)Tinstead of the matrices Bk in the iterative process. In this caseHk+1 = Hk + (�2 � 1)HkY k(Y k)THk(HkY k; Y k) ;where � = 1=�, and (10) will take the formxk+1 = xk � �k Hk+1@f(xk)q(Hk+1@f(xk); @f(xk)) :The use of the symmetric matrices Hk instead of Bk would allow usto considerably reduce the requirements of the algorithm for the memoryvolume. In addition, the matrix Bk with an increase of k tends to zeromatrix. The direct calculation of Hk = Bk(Bk)T can result the fact thatthe matrix Hk will not be strictly positive de�nite.In [7], based on the algorithm from [5], a reliable way of recalculationin iterations of the iterative matrices Hk in the factorized form is proposed.The proposed procedure, as in the quasi-Newton algorithm, provides theiterative transfer from the representation Hk in the form LkDk(Lk)T toLk+1Dk+1(Lk+1)T for Hk+1.For the search for the displacement �k it is possible to use the algorithmsbased on the quadratic, the cubic interpolation, or a special adaptive algo-rithm similar to the algorithm from [6]. The �rst two are o�ered for smoothf , and the adaptive algorithm is applicable in the case of non-smooth f .2. Solution of problemsTo verify the reliability of software, a series of calculations have been carriedout. As an object function, the well-known test problems of unconditional



Minimization of nonlinear functions with linear restrictions 23optimization were selected. Matrices of constraints were selected from a testset of the linear programming problems NETLIB [8]. The problems weresolved on the computer P-75.Further, examples of minimization of the generalized Rosenbroc functionfor n > 2 are given:f(x) = nXi=2(100(xi� x2i�1)2 + (1� xi)2)with the initial point x0 = (�1:2; 1; : : : ; 1)T . It is a known fact thatthe unconditional minimization of the Rosenbroc function results in x� =(�1; 1; : : : ; 1)T and f� = 0. In each problem, the vector of the right partsof the constraint (2) is redetermined: for i = 1; 2; : : : ; m, bi = nPj=1aijx�j + �i,where the values �i are taken at random. Depending on the sign �i, the typeof a constraint is introduced. The values �j and �j from (3) are selected sothat the conditions �j � x�j � �j , j = 1; 2; : : : ; n, be ful�lled.In Tables 1 and 2, the results of solution of these problems by variousmethods are presented. The following notations are used:it { the total number of iterations;NF { the number of calculations of a function;NG { the number of calculations of a gradient;�x = maxi jx�i � 1:0j; �f = jf�j;hr = maxi ���� nXj=1 aijx�j � bi����; hc = maxj2IB ���� mXi=1 aijy�i � c�j ����;where IB is a list of basis variables, y�i are dual estimations, c�j is the j-thcomponent of gradient of the function f at the point x�, t is time in seconds.Table 3 shows results of minimization of the non-smooth function from [9]f(x) = 101Xj=1���� nXi=1 xiti�1j � nXi=1 x�i tj�1i ����;tj = 0:01(j�1), j = 1; 2; : : : ; 101, x0 = (0; 0; : : : ; 0)T with linear constraints.The minimum of this function is f� = 0 at the point xT = ( 1n ; 1n ; : : : ; 1n).Here �x = maxj jx�j � 1n j.



24 E.A. Kotel'nikov, G.I. ZabinyakoTable 1. Conjugate gradients methodName ofproblem it NF NG �x �f hr hc tBRANDY 2478 7566 9840 2.E�8 5.E�13 1.E�11 2.E�20 24CAPRI 5907 14941 20481 7.E�8 8.E�12 2.E�12 4.E�19 77GROW7 381 749 1009 2.E�8 1.E�12 6.E�12 2.E�20 4GROW15 1180 2867 3723 2.E�8 2.E�12 2.E�11 1.E�16 27SCTAP1 12817 26659 39032 2.E�7 1.E�10 2.E�9 8.E�20 160FINNIS 5685 16588 21633 3.E�8 4.E�12 6.E�9 2.E�12 121GFRD-PNC 16663 35208 51085 4.E�6 6.E�8 5.E�8 2.E�17 403E226 592 590 857 1.E�8 4.E�13 3.E�12 4.E�12 5SCFXM1 3537 6749 9736 7.E�8 1.E�11 9.E�11 3.E�19 49LOTFI 1544 3919 5121 8.E�9 3.E�9 5.E�10 3.E�10 14Table 2. Quasi-Newton methodName ofproblem it NF NG �x �f hr hc tBRANDY 561 927 1284 1.E�8 2.E�12 1.E�11 9.E�20 15CAPRI 1306 2228 3167 6.E�9 1.E�13 7.E�11 1.E�19 54GROW7 370 646 895 9.E�9 5.E�15 5.E�12 1.E�20 21GROW15 709 946 1331 5.E�9 3.E�13 2.E�11 2.E�17 156SCTAP1 2211 3812 5438 3.E�7 1.E�10 4.E�9 3.E�20 202FINNIS 1976 2980 4316 3.E�8 1.E�12 4.E�10 3.E�12 181GFRD-PNC 2189 2954 4358 3.E�6 7.E�9 5.E�8 3.E�17 1226E226 407 168 249 2.E�8 3.E�12 9.E�13 8.E�11 7SCFXM1 1261 1623 2334 2.E�8 4.E�12 9.E�11 3.E�18 72LOTFI 616 683 957 5.E�9 2.E�13 2.E�8 5.E�8 23Table 3Name ofproblem it NF NG �x �f tSC105 204 593 146 0.027 4.7E�6 8KB2 357 3117 322 2.3E�4 2.6E�6 9RECIPE 440 2697 399 0.022 2.2E�4 33SC50A 227 1489 190 4.8E�9 3.6E�8 5SC50B 156 1112 126 6.7E�9 2.9E�8 4SHARE2B 469 2323 382 2.4E�3 2.3E�5 13



Minimization of nonlinear functions with linear restrictions 253. Quadratic programmingThe software for convex quadratic problems is collected in a separate pack-age. This is connected with simple realization of the conjugate gradientsmethod for such problems, the e�ciency of computing process and the pres-ence of reliable means of control over computational errors.The problem of quadratic programming is in the minimization of thefunctions f(x) = 12xTQx + cTx, with constraints (2), (3), where Q is asymmetric positive de�nite matrix.As known, the scheme of the linear conjugate gradients method is of theform: p0 = �r0;pk = �rk + �kpk�1; k > 0;xk+1 = xk + �kpk;rk+1 = rk + �kQpk ; (11)where rk = Qxk + c is the gradient of the function at the current point xk ;the coe�cients �k are calculated by the formula providing conjugation ofthe vectors pk: �k = krkk22=krk�1k2; �k is the value of displacement alongthe direction pk to the minimum point: �k = krkk22=((pk)TQpk).With linear restrictions in scheme (11), the gradient rk and the matrix Qare replaced by the reduced gradient and the reduced matrix, respectively,which brings about the change of calculations of �k, �k, and pk.In the space of superbasis variables, the direction of the descent pkS =�hk + �kpk�1S is found, where �k = khkk22=khk�1k22. Then the direction pkBfor the basis variables is calculated:pkB = �B�1SpkS = �WpkS :Non-basis variables do not change their values, therefore the vector pkN isequal to zero. Consequently, the general direction of the displacement in theoriginal space (pk)T = ((pkB)T ; (pkS)T ; 0T) will satisfy the condition Apk = 0.Further the value of the displacement �k along the direction pkS to theminimum point of the function F is found as follows:�k = � (hk)TpkS(pkS)THpkS :For calculation of the quadratic form in the denominator, the matrix H isnot needed, because of(pkS)THpkS = (pkS)TVQV T pkS = (pk)TQpk :



26 E.A. Kotel'nikov, G.I. ZabinyakoFor estimation of the accuracy of solution of the subproblem, the criterionproposed in [10] is made use of. After any ps iterations of the subproblem,the values ' = k�rk � rkk2 and  = exp(( tS )2), are calculated, where �rk =Qxk + c, t is the number of the current iteration of the subproblem, k is thegeneral number of iterations at a concrete moment. Then, if krkk22 � ' ,it is considered that the process can be continued; otherwise, it is necessaryto regenerate the conjugate gradients scheme.For testing the software, matrices of constraints were selected from theset NETLIB, and the matrix Q was generated using various versions ofdistribution of the eigenvalues di > 0, Q = TTDT , where T is an orthogonalmatrix, D is a diagonal matrix with the entries di on the diagonal. Thetesting has shown a high reliability of the software.4. Some information about the packageThe software can be executed on the computers IBM PC in DOS-environ-ment, Silicon Graphics and RM600 in media similar to UNIX; in the pro-gramming language FORTRAN-77.The software, in addition to procedures of the numerical solution ofproblems, contains data processing programs, compilation of dictionariesand reference tables, translation from the external MPS-format [1] to theinternal package format. For matrices, the sparse column format is used,which is determined by analogy with the line sparse format [11]. In thelinear programming procedures, the matrices reverse to the basis matricesare presented in the multiplicative form. A special data structure is usedfor storing multiplicators [12].In the sequel, it is assumed to supplement the software with algorithms ofsolution of nonlinear discrete problems and to develop their parallel versionsfor the computer RM-600.References[1] Murtaf B. Modern Linear Programming. Theory and Practice. { Moscow: Mir,1984.[2] Beale E.M.L. A derivation of conjugate gradients // Numerical methods fornonlinear optimization / Ed. F.A. Lootsma. { London; New York: AcademicPress, 1972. { P. 39{43.[3] Powell M.J.D. Restart procedures for the conjugate gradient method // Math.Prog. { 1977. { ü 12. { P. 241{254.[4] Zabinyako G.I. Restart procedures in the conjugate gradients method // Op-timizatsia. { 1989. { ü 46 (63). { P. 5{13.
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