
Bull. Nov. Comp.Center, Comp. Science, 22 (2005), 69–77
c© 2005 NCC Publisher

Parallelizing some problems of the discrete
and the non-convex optimization

E.A. Kotel’nikov, G.I. Zabinyako

Abstract. This paper considers aspects of parallelizing of the solution process of
problems of the integer linear and quadratic programming as well as of problems
of global optimization of the non-convex quadratic programming.

Introduction

Solution to problems of discrete and global non-convex optimization call
for their solution large computer costs. It is urgent to work out a special
parallel software for solving such problems. Programs in question are being
developed in FORTRAN with the use of the MPI parallel programming
system.

Section 1 describes application of algorithms with branches and bound-
aries with one-sided branching as applied to problems of the integer linear
and the integer quadratic programming. Parallelizing of the algorithms in
question is carried out asynchronously on each processor. As a result, in
the parallel version we have a combination of algorithms with one-sided and
simultaneous branching. The program realization of algorithms with simul-
taneous branching is a time-consuming task and requires very big poorly
structured arrays for storing the list of estimation problems. The use of
the MPI considerably facilitates programming combinations of algorithms
with one-sided and simultaneous branching. When executing in the parallel
mode has shown the abbreviation of computer costs, i.e., the abbreviation
of a general number of iterations made on all the processors for solving aux-
iliary tasks, as compared to the sequential mode. Thus, due to parallelizing
we attain acceleration exceeding the linear one. In the course of parallelizing,
processes exchange with short messages against execution of a large number
of arithmetic operations, thus providing a high parallelizing efficiency both
on computer systems with shared memory and on clusters. Many prob-
lems were solved on MVS-1000M and RM-600 E30 in the sequential and the
parallel modes, some statistics is given below.

Section 2 presents some problems of the integer linear programming of
a special type, i.e., covering problems and partitioning problems. Programs
intended for solving the integer linear programming problems of a general
type are not quite suitable for solving such problems. Therefore, to solve
them, we should use special algorithms.



70 E.A. Kotel’nikov, G.I. Zabinyako

Section 3 deals with global optimization algorithms as applied to prob-
lems of the non-convex quadratic programming. A global maximum of the
quadratic function is localized with the help of a decreasing sequence of
linear or quadratic majorants of the object function, constructed on sub-
domains of an admissible domain. Solution to such problems can also be
reduced to application of the method of branching and boundaries with one-
sided branching, thus allowing us in the parallel mode to attain acceleration
exceeding the linear one.

1. Problems of the integer linear and the integer quadratic
programming

The problems presented are as follows: Find a minimum f(x) under the
constraints

Ax = b (1)
α ≤ x ≤ β (2)

xj are integers for j ∈ J. (3)

Here A is an m × n matrix; x, α, β ∈ Rn; b ∈ Rm; J is a set of indices of
integer variables. In problems of the integer linear programming (ILP), a
linear function f is set by means of the vector c ∈ Rn. The object function
in problems of the integer quadratic programming (IQP) is f(x) = (Qx, x)+
(c, x), where Q is a symmetric n×n matrix and Q ≥ 0. The algorithms are
designed with allowance for sparseness of the matrices A and Q.

1.1. Sequential algorithms. Solution to original problems is reduced
to solution of a series of estimation problems. The latter differ from the
original problems in that the requirement for integers (3) is absent, and in
each i-th estimation problem, conditions (2) are replaced by the conditions
αi ≤ x ≤ βi. The vectors αi and βi are formed according to the rules of the
method of branching and boundaries.

The ILP estimation problems are solved by the simplex method. For
solution of the IQP problems, the reduced gradient method [1] is applied,
where the initial variables x are subdivided into basic, superbasic, and non-
basic. Minimization in a subspace of superbasic variables is made by the
linear conjugate gradient method. Selection of a branching variable is fre-
quently done with the use of penalties [2].

The value of a basic variable (in the nonlinear case, the value of a su-
perbasic variable as well) xj for j ∈ J in the optimal basis of the current
estimation problem will be presented as xj = [xj ] + vj , where [xj ] is the
integer part of xj . The penalty for an increase xj by the value 1 − vj is
denoted by P+

j , while for a decrease by the value vj –– by P−j .



Parallelizing some problems. . . 71

The algorithms of solution to the ILP and the IQP problems consist of
the following steps:

Step 0. Set i = 0, k = 0, the incumbent value r0 = +∞, α0 = α, β0 = β.

Step 1. Solve the estimation problem. Let xi be an optimal solution and
f i = f(xi). If f i ≥ ri or a system of constraints is inconsistent, assign
ri+1 = ri, i = i+ 1 and go to Step 3.

Let f i < ri. If the vector xi meets the demands of integerness of the
components xi

j for j ∈ J , then assign ri+1 = f i, i = i+ 1. If f i = f0, go to
Step 5, otherwise, to Step 3.

Step 2. If f i < ri, but the integerness conditions are not fulfilled, then
for those basic (and superbasic in the nonlinear case) variables xj , j ∈ J ,
whose xi

j is not integer, define the penalties P+
j , P−j . Among them find a

minimum penalty Pmin. If f i + Pmin ≥ ri, go to Step 3.
For f i + Pmin < ri perform branching in the variable xj , corresponding

to a maximum penalty P+
j or P−j . Choose the least from P+

j and P−j .
Let P−j ≤ P+

j , then choose the next problem corresponding to P−j . As-
sign k = k+1, put on the list of estimation problems the one, corresponding
to the penalty P+

j . In this case check, whether f i +P+
j ≥ ri, then mark the

branch, corresponding to P+
j . Change the upper boundary of the variable

xj , setting it equal to [xi
j ], and go to Step 1.

If P+
j < P−j , then the list stores the problem, corresponding to P−j , and

in the problem in question the lower boundary of the variable xj is set equal
to [xj ] + 1.

Step 3. If k = 0, go to Step 5. For k > 0, if the branch is marked or
f i + P i ≥ ri, where P i is the penalty P+

j or P−j , go to Step 4. Otherwise
formulate a problem alternative to the one, formed at Step 2 for f i +Pmin <
ri. Mark the corresponding branch and go to Step 1.

Step 4. Set two-sided constraints on the variable xj , using the information
from the list of problems. Assign k = k − 1 and go to Step 3.

Step 5. Termination.

1.2. Parallel algorithms. Amongst the processor elements we distinguish
the one with zero number, which, in addition to execution of the algorithm
with branching and boundaries with one-sided branching carries out some
scheduler functions. In the course of solution, some reference data, necessary
for arranging parallel computations, are being stored. At the initial stage,



72 E.A. Kotel’nikov, G.I. Zabinyako

the data about the problem are read from the external memory by zero pro-
cessor and are transferred to all the rest. Further, zero estimation problem
(the original problem with no allowance for integer features) is solved on
zero processor, other processors being in expectation.

In the ILP problems, for loading any processor, the indices of basic and
nonbasic variables and a part of the list of estimation problems are trans-
ferred to its main memory. The values of elements of integer arrays and
a part of the list of estimation problems to be transferred are determined
by the level k which starts the solution to the first after loading estima-
tion problem. Based on the list of basic variables, a matrix – inverse to
the basic one is constructed, and execution of the algorithm with branching
and boundaries with one-sided branching starts with the level k. In the
IQP problems, it is necessary, in addition, to transfer the array of indices of
superbasic variables and a real array of values of superbasic variables.

To regulate the loading of processor elements, an array of pairs (i, ki) is
stored in zero processor, where i is the number of a processor and ki is the
level of an unmarked branch at the i-th processor. At each of the processors
an attempt is made to prepare ki with the least value (which corresponds
to the highest unmarked branch at a given processor). If a certain i-th
processor is at rest, this is marked with assigning ki = −1.

Let us consider a case when the i-th processor completes the fulfilment
of the algorithm –– zero level has been attained –– or the processor has not
been loaded yet. If the number of a processor element i > 0, then the i-th
processor transfers a call for loading to zero processor. After receiving a call,
a pair (j, kj) with a minimum value kj > 0 is selected at zero processor, and
a message about the need of loading the i-th processor is transferred to the
j-th processor. As a result, at the j-th processor, a branch of the level kj is
marked, and the loading data are transferred to the i-th processor. If kj > 0
does not exist, then the i-th process is in expectation. When completing
the fulfilment of the algorithm on zero processor, the number of the j-th
processor for loading is determined in a similar way.

If at a certain processor a new value of the incumbent r is received,
this value is transferred to all the other processors. When receiving a new
incumbent at each processor, the values f i and Pj , corresponding to the level
k, with which the algorithm fulfilment at a given processor has started, were
selected from the list of problems. The condition f i+Pj ≥ r is either equal to
Pj , P+

j or P−j is checked. If this inequality is fulfilled at a certain processor,
then at this very processor the fulfilment of the algorithm is completed and
the call for loading is done.

The obtained value of r is used for data revision of marked and un-
marked branches in the list of problems. It may appear that at a certain
processor j an unmarked branch intended for loading some other processor
is marked. In this case, the information about a change of kj is transferred



Parallelizing some problems. . . 73

to zero processor. In order that the data for loading some other processor
be prepared in the j-th process, it is needed to make some supplementary
calculations, and the value kj can then have not the highest level among
unmarked branches.

The problem has been solved if zero level is attained in all processor
elements, or the incumbent value, equal to f0, is received at a certain pro-
cessor.

The input data of the problem are transferred by the blocking MPI func-
tion MPI_BCAST. In the sequel, all processes are carried out asynchronously,
and exchanges are done by unblocking functions. The same MPI functions
are used for solution to the ILP and the IQP problems.

1.3. Examples of solution to problems. Numerical experiments were
carried out on MVS-1000M, 10 processors being employed in the parallel
program. Table 1 represents statistical data on solution to the ILP problems.
The following notation is used: m is the number of lines in the matrix
of constraints; n is a general number of variables among which ni is that
of integer; it1 is the number of iterations for solution to problems by the
sequential algorithm; it10 is the total number of iterations fulfilled on all the
processors by the parallel algorithm; t1 is the time (in seconds) needed for
solution to a problem by the sequential algorithm; t10 is the time needed by
the parallel algorithm.

Table 1

Problem m n ni it1 it10 t1 t10 t1/t10

1 91 104 58 7547308 2504731 634 31 20.45
2 91 104 58 7547308 2732125 634 44 14.41
3 97 1989 1989 3540594 2136474 1315 104 12.64
4 363 1298 1254 9850308 10108694 3983 584 6.82
5 1248 1224 720 >120000000 126305890 133448 13560 9.82
6 1392 1224 408 19804205 17061570 20551 1887 10.89
7 2176 6000 6000 44597720 25133600 50398 3715 13.57

The first and the second lines in the table present the results of solution to
the same problem. Problems of small dimensions (with small values of m)
are characterized by essential variations of the total number of iterations
and the time needed for problem solution in the parallel version for different
program startups.

In Problem 5, an optimum has been found by means of the sequential
program, however, the optimality was not substantiated for a given number
of iterations.

Table 2 shows the distributions of the number of iterations in estimation
problems: the number of iterations needed for solving a null estimation



74 E.A. Kotel’nikov, G.I. Zabinyako

Table 2

Number of iterations
Problem

1 2 3 4 5 6 7

Null estimation 97 97 565 283 995 2043 1066
Average in sequential mode 2.8 2.8 328.4 23.7 28.6 32.1 38.1
Average in parallel mode 2.7 2.8 350.5 24.5 37.7 29.2 26.9

problem, the average number of iterations of solution to estimation problems
in the sequential mode, and the same in the parallel mode.

Table 2 explains the reason of large variations in the statistics from
Table 1 for the Problems 1 and 2–– the interprocessor exchanges are primary
in this problem.

Problem 3 is distinct for large mean values of iterations in estimation
problems. This is an example of a problem that is unsuitable for the simplex
method. In most of iterations of the simplex method, zero offsets are formed.

When testing the IQP programs, similar relations for sequential and
parallel algorithms are obtained. For more detail about programs and their
testing the reader is referred to [3, 4].

2. The ILP problems of a special form

The following problems are considered:

Minimize
∑
j∈J

cjxj

under the conditions∑
j∈Ji

xj ≥ 1, i ∈ I1,
∑
j∈Ji

xj = 1, i ∈ I2,

xj = 0 or 1, j ∈ J,

where J = {1, . . . , n}, introduce I = I1 ∪ I2, then Ji, i ∈ I, define a subset
of the indices J of those variables which participate in the i-th constraint.
Denote by Ij a set of constraints indices with participation of the variables
xj , i.e., Ij = {i ∈ I : j ∈ Ji}. It is assumed that cj > 0 for all j, where
Ij ⊆ I1. If I1 = ∅, then we have a partitioning problem, and for I2 = ∅ ––
a covering problem.

This class of large-dimension problems has long-resisted solution with
the help of the ILP algorithms of a general type. The difficulty is in that
the basic solutions are strongly degenerate in estimation problems of the
linear programming.

Algorithms and software for the given type of problems are constructed
on the basis of the methods proposed in [5, 6].



Parallelizing some problems. . . 75

If in the original problem the requirement that xj = 0 or 1 is replaced
by the condition xj ≥ 0 for all j, then the dual problem to thus obtained
one takes the form:

Maximize zl(u) =
∑
i∈I

ui

under the conditions∑
i∈Ij

ui ≤ cj , j ∈ J, ui ≥ 0, i ∈ I1.

We introduce the upper zu(x) and the lower zl(u) boundaries for the
object function in the method of branching and boundaries with branching
that we use for solution of problems. Various heuristics are used for ob-
taining the estimations of boundaries. In this case, of primary importance
is maximization of the lower estimation with the help of the subgradient
method [7]. In fact, efforts are made to replace solution of estimation prob-
lems by application of the subgradient method to the dual problem, whose
computer costs are much lower. Using the subgradient method it is required
to find a maximum

zl(u) =
∑
i∈I

ui +
∑
j∈J

min
xj=0 or 1

(
cj −

∑
i∈Ij

ui

)
xj

under the conditions ui ≥ 0 for i ∈ I1.
The choice of variables of branching xj is made based on the ordering

by priorities depending on the estimations ui of the lines of constraints,
and j are selected from Ji in a certain sequence. The algorithms do not
possess such a parallelism as the method of branches and boundaries with
one-sided branching. Here it is appears difficult to gain a uniform loading
of all processors in the parallel mode.

Currently, is the OR-Library [8], there are available practical problems
with a number of variables exceeding one million and with a number of con-
straints up to several thousands. Solution to such problems surely demands
large computer costs.

3. The search for a global extremum in non-convex
quadratic programming

Consider the problem

global max f(x) = xTQx+ cTx (4)

on a limited polyhedron given by the conditions

Ax = b, α ≤ x ≤ β. (5)

Here A is an m × n matrix, b ∈ Rm, c, x, α, β ∈ Rn, Q is a symmetric
non-negative definite n× n matrix.



76 E.A. Kotel’nikov, G.I. Zabinyako

Transform problem (4), (5) in the following manner. If Q is a posi-
tive definite matrix and LDLT is its Choletsky factorization, then having
changed the variables LTx = y, obtain the problem

global maxψ(x, y) = yTDy + cTx (6)

under conditions (5) and
x− (LT )−1y = 0. (7)

If Q is a alternating signs matrix, then applying to it the procedure of
the modified Choletsky factorization [9], obtain Q = LDLT −D1, where L
is the lower triangular matrix, D is a diagonal matrix with positive entries
on the diagonal, D1 is a diagonal matrix with non-negative elements on the
diagonal. After changing the variables y = LTx obtain the problem

global maxψ(x, y) = yTDy − xTD1x+ cTx (8)

under conditions (5), (7).
Further, independent of attributes of the matrix Q, find the limit of

changing ui, vi of the variables yi, where yT = (y1, y2, . . . , yn), having solved
2n problems of the linear programming ui = min yi, vi = max yi under
conditions (5), (7). Denote by G a set, defined by these conditions and on
it define majorants of the functions ψ, set in (6) and (8).

The majorant of the function, defined in (6), is a linear function

M(x, y) = (u+ v)TDy + cTx− uTDv, (9)

where uT = (u1, u2, . . . , un), vT = (v1, v2, . . . , vn), and the majorant of the
function ψ set in (8), is the following quadratic function

M(x, y) = (u+ v)TDy + cTx− xTD1x− uTDv. (10)

The majorants M(x, y) possess the following features. Let (x∗, y∗) ∈ G be
a point, where at least one component y∗i meets the condition ui < y∗i < vi.
Consider two subsets of the set G:

G−i =
{
(x, y) ∈ G : ui ≤ yi ≤ y∗i

}
, G+

i =
{
(x, y) ∈ G : y∗i ≤ yi ≤ vi

}
.

On the sets G−i , G
+
i define the majorants M−,M+ of the function ψ by rule

(9), if Q is a positive definite matrix, and by rule (10) if Q is a alternating
signs matrix. Then it is easy to check that the following statements are
valid:

∀(x, y) ∈ G−i M(x, y)−M−(x, y) = di(vi − y∗i )(yi − ui) ≥ 0,

∀(x, y) ∈ G+
i M(x, y)−M+(x, y) = di(y∗i − ui)(vi − yi) ≥ 0,



Parallelizing some problems. . . 77

M−(x∗, y∗) = M+(x∗, y∗).

Here di are diagonal entries of the matrix D.
Based on the above features of majorants, it appears possible to construct

an algorithm of the method of branching and boundaries with one-sided
branching for the search for a global maximum of the function f on the setG.
At the k-th level of the method, a set of admissible solutionsGk is partitioned
to the two subsets G−k and G+

k in such a way that the majorants Mk, M−
k ,

M+
k of the function ψ on Gk, G−k , G+

k satisfy, respectively, the conditions
Mk ≥M−

k on G−k , Mk ≥M+
k on G+

k , M−
k = M+

k on G−k ∩G
+
k . As an object

function of the estimation problem of the next level one chooses either M−
k

or M+
k , therefore if Q is a positive definite matrix, then at each level of the

method in question, an estimation problem of the linear programming is
solved, or if Q is a alternating signs symmetric matrix, then an estimation
problem of the quadratic programming is solved. The algorithm is described
in detail in [10].

References

[1] Murtaf B. Modern Linear Programming. Theory and Practice.––Moscow: Mir,
1984.

[2] Kovalev M.M. Discrete Optimization (Integer Programming). –– Minsk: Be-
loruss University, 1977.

[3] Zabinyako G.I., Kotel’nikov E.A. Linear optimization programs // NCC Bul-
letin. Series: Num. Anal. –– Novosibirsk: NCC Publisher, 2002. –– Iss. 11. ––
P. 103–112.

[4] Zabinyako G.I., Kotel’nikov E.A. Parallel algorithm of the integer quadratic
programming // Computer Technologies. –– 2004.–– Vol. 9, No. 1. –– P. 34–41.

[5] 5) Fisher M.L., Kedia P. Optimal solution of set covering/partitioning prob-
lems using dual heuristics // Manag. Sci.–– 1990.––Vol. 36, No. 6.––P. 674–688.

[6] Balas E., Carrera M.C. A dynamic subgradient-based branch and bound pro-
cedure for set covering // Oper. Res. –– 1996.–– Vol. 44, No. 6. –– P. 875–890.

[7] Polijak. Minimization of unsmooth functionals // Computational Mathematics
and Mathematical Physics. –– 1969. –– Vol. 9, No. 3. –– P. 509–521.

[8] Beasley J.E. OR-Library: distributing test problems by electronic mail // J.
Oper. Res. Soc. –– 1990.–– Vol. 41, No. 11. –– P. 1069–1072.

[9] Gill F., Murray W., Right M. Practical Optimization. –– Moscow: Mir, 1975.

[10] Kotel’nikov E.A. The search for a global maximum of the quadratic function
with linear constraints // Siberian J. Comput. Math. –– Novosibirsk, 2004. ––
Vol. 7, No. 4. –– P. 327–334.



78


