Bull. Nov. Comp. Center, Num. Anal., 12 (2003), 41-47
© 2003 NCC Publisher

Integer quadratic programming programs®*

E.A. Kotel’'nikov, G.I. Zabinyako

This paper considers the software of the integer and the 'mixed-integer quadratic
programming, which is based on the method of branches and boundaries with one-
sided branching. Some examples of the solution of test problems are presented.

Introduction

The algorithm of the integer and the mixed-integer quadratic programming
(IQP) is intended for the solution of problems of the following form:

to minimize f(z) = %(:n, Qz) + (¢, 2) (1)
under the constraints
Az =b, ‘ (2)
a<z<B, (3)
z; are integers for j € J. (4)

Here A is m X n matrix; Q is a symmetric positive semi-definite I x I matrix
withl < n; ¢,z,a,8 € R®; b€ R™, J is a list of integer variables.

The input data of the problem are represented in the MPS-format [1].
The column-wise sparse format [2] is used to store the matrices A, Q; Q only
diagonal and sub-diagonal entries being stored.

The method of branches and boundaries with one-sided branching is
implemented in the IQP programs [3]. The process of solution reduces to
solving a sequence of estimation problems of the quadratic programming.

1. Solution of estimation problems

The difference of the estimation problems from the original problem
(1)-(4) is in that condition (4) is absent and in each i-th estimation problem,
conditions (3) are substituted for the conditions of < = < 8*. The vectors
o and 3 are formed by the rules of the method of branches and boundaries,
which will be considered in the sequel.

For the solution of estimation problems, the reduced gradient method
[1], where the variables & are subdivided into the basis zp, the superbasis

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.

42 E.A. Kotel’nikov, G.1. Zabinyako

x5 and the nonbasis z variables, is used. In the matrix A, B-basis m x m,
S-superbasis m x s and N-nonbasis m x (n — (m + s)) matrices are distin-
guished, respectively. It is assumed that B is a non-singular matrix, the
variables zy taking their boundary values.

In the current subspace of the superbasis variables, minimization is done
by the conjugate gradient method. At the k-th step of the method, the
following is successively defined:

1. The vector of dual variables
y* = (B7)TVf(ah);

2. The reduced gradient vector*
h* = Vf(z5) - STy

3. The vector of direction of the superbasis variables in a subspace

ph = k4 [oL,
s Ine-1)37s

4. The vector of direction of the basis variables in a subspace

vk = -B7'Sp;
5. The optimal step along p*
(R*, P
n=-Gm)
(r*, Qp*)

where the vector p* is composed of p%, p%, and p§, = 0. Let z*+! =
z* + \p*, where A = min{)x, Apaz}, and

Amax = a.rgmf.x{,\ pat <azf+apk < ﬁ‘}

Y

If Ar > Amax, then according to the reduced gradient method, the con-
tent of superbasis and other variables is changed, and the conjugate gradient
method starts in the new subspace. Otherwise, the process of the conjugate
gradient method continues till the reduced gradient (with prescribed accu-
racy) becomes equal to zero.

To decrease the influence of computational errors on the process of the
conjugate gradient method, the accuracy of solution to the systems of equa-
tions BTy* = Vfg(zk), Bp% = Spk is controlled, and if necessary, their
solutions are defined more precisely.

Integer quadratic programming programs 43

To avoid “recycling” of the conjugate gradient method in ill-conditioned
problems, it is reasonable to make use of the technique proposed in [4] which
is in checking - after a certain number of iterations — the fulfillment of the
inequality: [|h*||2 < c(k)||R* — h*||3, where the value c(k) increases with k
growing, h is a reduced gradient with direct calculation of Vf(z%), and in
h* the recurrently calculated Vf(z%) is used. When fulfilling the inequality,
the process of the conjugate gradient method in a given superbasis subspace
is completed.

Upon completion of optimization by the conjugate gradient method in
a current superbasis subspace, based on the dual estimations of nonbasis
columns, the possibility to form a new set of superbasis variables is checked.
If there are no variables to be transferred from nonbasis to superbasis ones,
the estimation problem is considered to be solved. Otherwise, the conjugate
gradient method in the new superbasis subspace is used.

The specific features of the implementation of procedures of recurrent
recalculation of matrices reverse to the basis ones and the reconstruction

of inverse matrices, as well as programs of data preparation are considered
in {5].

2. Algorithm of Integer Quédratic Programming

Estimations of the boundaries of the object function (1) with allowance for
(4) are obtained from solutions of estimation problems of the quadratic pro-
gramming (QP). The branching variable in the integer linear programming
(ILP) is often chosen by means of penalties [1, 3]. In the considered al-
gorithm IQP, an attempt is also made to use, where possible, the penalty
estimations when choosing a branching variable.

First, let us consider a linear case. Let the value of the basis variable z;
for j € J in the optimal basis of the next estimation problem be given as
z; = [z} + vj, where [z;] is the integer part of z;. Let P; stand for the
penalty for an increase of z; by the value 1 —v;, and P;” - for a decrease of
z; by the value v;.

We will present a penalty estimation a.lgonthm using P;", as an example.
Numbers of non-basis variables will be assigned in the two lists: in I we
put numbers of variables fixed at the lower boundary and in I} - at the
upper one. If the variable z; occupies the p-th position in the basis, then
z = e} B~ is calculated, where e, is the p-th ort vector in R™. Then

P} = min{qg?:i‘:,d{(l - v,)(am)} erf"l,?;po{(l - v:‘)(__&':_q)}}.

where apq = (2, Ag), Ay is the g-th non-basis column of the matrix A, dg is
its reduced estimator. If the g-th nonbasis variable must be integer, then

44 E.A. Kotel’nikov, G.I. Zabinyako

(1 —v;)(=2-) or (1-v;)(522), which are less than |dy|, are replaced by |d|.
The initial values of PJ-_ and PJ?" are assumed to be equal to +o0.

Let us replace the penalties for the quadratic function f by penalties
for the linear function g(z) = (Vf(z),z — z*), where z* is solution of the
next estimation problem QP. As the initial function is convex, the penalty
estimations for g(z) will not exceed the penalties for f(z). In the nonlinear
case, when calculating penalties, it is necessary to additionally take into
account superbasis variables — if they are present in the optimal solution of
the estimation problem.

The values d, for superbasis variables are equal to zero (d, is the g-th
component of the reduced gradient), and when dealing with the next j-th
variables, penalties do not turn to zero only if apq = 0. For any j-th super-
basis variable P"’ P =0.

Let Ppax = max; ma.x{P P"'} In the ILP problems Pp,x = 0 in
those estimation problems whlch have not a single optimal basis. In the
nonlinear case, the possibility to obtain Py, = 0 increases at the account
of superbasis variables. However numerical experiments have shown that
the use of penalties in some ILP problems allows a considerable decrease of
the time needed for the solution.

If Prax = 0, then a basis or a superbasis variable z;, whose value is the
farthest from the integer, is chosen. In this case, for the time of defining a
branching variable we assume P;" =1 — vj and P;” = vj.

Schemes of the method of branches and boundaries with one-sided
branching enable us to use a compact form of the lists of estimation prob-
lems. Let the variable z; with the penalties P and I-"J?" be chosen for
a branching at a certain level k. If PJ-' < 1%-‘", then as the next estima-

tion problem, we choose a problem corresponding to P;” and in the list of
estimation problems (in the auxiliary array k) the information about an al-
ternative problem should be stored. To this end, the followmg assignments
are performed: h(1,k) = j; h(2,k) = ﬂ’, where ﬂ‘ is the upper boundary of
the variable z; in the i-th estimation problem at the previous level (k — 1);
h(3,k) = 1if f* + PJ-+ > r', and h(3,k) = 0 otherwise. Here f* is the op-
timal value of f in the i-th estimation problem, and r* is the current value
of the incumbent; h(4,k) = f*; h(5,k) = P;. For P} < P; we choose an
estimation problem corresponding to thg penalty P+ and the array h stores
the values: h(1,k) = —j; h(2,k) = o}; h(3,k) is equal toOor1l dependmg
on fulfillment of the inequality f* + P > rY; h(4,k) = £ h(5,k) =

Algorithm: _
Step 0. Set ¢ = 0, k = 0, the incumbent value r° = +00, a® = a, and

&= 8.

Integer quadratic programming programs 45

Step 1. _Solv}e the current QP problem. Let z* be its optimal solution and
ft = f(z*).
a) if f* > r* or the system of constraints is inconsistent, then assign
r*1=pf i=1i+1, and go to Step 3;
b) let f* < r. If the vector 2* is not integer, then go to Step 2. If the
solution z* is integer, then assign r**! = f*, i =i+ 1. For fi = f% go
to Step 5, else to Step 3.

Step 2. For basis and superbasis variables z;, j € J, whose z_‘;- is not

integer, calculate the penalties 15;-'", O; . Among them find the minimum
penalty Ppin.

a) if f* 4+ Puin > ¥, then go to Step 3;

b) for f* + Pmin < r¥, perform branching by the basis or superbasis vari-
able z; that corresponds to the maximum penalty P;* or P;". Choose
the least from P;" and P; . If P; < Py, then choose the next esti-
mation problem corresponding to P; . Increase k = k + 1, put on the
list the problem corresponding to the penalty P’J?*: Change the upper
boundary of the variable z;, setting it equal to [z}]. Go to Step 1.
(If P;* < Py, then the list h stores the problem corresponding to P},

and in the problgm in question the lower boundary of the variable z;
is set equal to [z3] + 1).

Step 3. If £ = 0, then go to Step 5. For k > 0, test either h(3,k) = 1 or
h(4,k) + h(5,k) > r*, then go to Step 4. Otherwise, using the array h, for-
mulate a problem alternative to that formed at Step 2.b. Assign h(3,k) =1
and go to Step 1. |

Step 4. Set two-sided constraints on the variable z;, using the values h(1, k)
and h(2, k). Assign k =k — 1 and go to Step 3.

Step 5. Stop.

Schemes of branches and boundaries with one-sided branching enable us
with lower computer costs to perform the transition to the next estimation
problem. The discussed realization of the scheme is similar in many respects
to the realization for the ILP in [5)].

3. Solution of problems

The test problems are borrowed from [6]. Table 1 lists the input parameters
of problems. Here No is number of a problem; m is the total number of

46 E.A. Kotel’nikov, G.I. Zabinyako

Table 1
No The name m me n n; ng nz
of a problem
1 ibell3a 106 —_— 122 60 31 304
2 ibell5 91 — 104 58 30 266
3 idcmulti 290 78 548 75 .75 1315
4 igesa3 1368 48 1152 384 216 4944
5 igesa3_0 1224 120 1152 672 336 3622
6 imas284 68 —_ 151 150 150 9631
7 imisco? 212 35 260 259 259 8619
8 iranl3 195 26 338 169 169 676
9 iran8 296 40 512 256 256 1024
10 ivalues 1 1 202 202 — 202

constraints among which m,. constraints are equalities, n is the number of
variables among which n; are integer and n; variables are Boolean; nz is the
number of non-zeroes in the matrix A.

Problems 1 and 6-10 were taken from the IQP tests in [6]. In all these
problems only the integer variables (zj, j € J) are nonlinear and in all
the rest variables the object function is linear. The matrices Q are well
conditioned. In these problems, except for problem 10, Q is diagonal, and
in problem 10 Q contains 7240 non-diagonal entries. Problems 2-5 were
obtained from the IQP-tests in [6] by adding to the object functions of
quadratic terms in the variables z;, j € J.

Table 2 contains characteristics of the solution process of problems by the
algorithm on the computer system MVS 1000M (processor ALPHA-21264
with the clock frequency 830 MHz). Here No is number of a problem; it is
the total number of iterations in estimation problems; cp is the number of
estimation problems; ¢ is the time of solution in seconds; P, shows how many
times the condition f* + Ppiy > r* was fulfilled in the process of problem

Table 2
No it cp t P, Py Py,
1 354065 35765 | 66.76 2680 -9648 18.
2 | 14952358 | 5263409 2311 | 279439 | 1593369 0
3 587901 20128 | 268.4 1407 3726 599
4 278756 8003 | 723.8 29 2456 0
5 508628 | 15646 1240 9 5516 0
6 1054772 53052 | 380.8 409 | 16672 | . 127
7 3848924 54826 | 305.7 202 6797 | 2086
8 | 184965622 | 1324478 4480 8847 537387 6604
9 | 16239520 985215 5751 4385 400440 | 15115
10 279864 15955 | 31.43 0 0| 7977

Integer quadratic programming programs 47

solution; P, — the number of cases when the condition f* + pP; > r* was
fulfilled, where P; = PJ?*' or P; = Pj_; Py shows how many times Ppay = 0.

References

(1] Murtaf B. Modern Linear Programming. Theory and Practice. — Moscow: Mir,
1984.

[2] Pissanetsky S. Technology of Disperse Matrices. - Moscow: Mir, 1988.

[3] Kovalev M.M. Discrete Optimization (Integer Programming). — Minsk: Belarus
University, 1977.

[4] Wilkinson J.H., Reinsch C. Manual of Algorithms in the Language ALGOL.
Linear algebra. — Moscow: Mashinostroenie, 1976.

[5] Zabinyako G.I., Kotel‘nikov E.A. Linear optimization programs // NCC Bul-
letin. Series Num. Anal. — Novosibirsk: NCC Publisher, 2002. — Issue 11. ~
P. 103-112.

(6] http://plato.la.asu.edu

