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Estimation of sensitivity of the active monitoring
method by harmonic signals

V.V. Kovalevsky

Abstract. The paper considers the estimation of sensitivity of the method of
active monitoring of changes in the elastic characteristics in the Earth’s interior
crust zone. The model of the Earth’s crust-mantle system in the form of a layer
in a half-space with different velocity values of elastic waves is presented. The
mathematical statement of the problem is done in the approximation of the wave
equation. It is assumed that a vibrational source is a point and a harmonic one
with a constant oscillation frequency and the zone of changes of the characteristics
in the medium is spherical. The wave field in the medium is calculated in the ray
approximation. The wave field variations in the medium and at the free surface
are determined for the case of insignificant velocity changes in the spherical region
by calculating a beam pattern of a fictitious 3D source in diffraction approach.
As a result of the modeling, the sensitivity of the active monitoring method with
harmonic vibrational signals is estimated. The relation between the quantitative
changes in the amplitudes and phases of the oscillations recorded at the surface, the
geometry and location of the zone of changes in the medium, and the magnitude
of changes in the elastic characteristics are determined.

Introduction

To determine the capability of the active vibroseismic monitoring method in
investigations of geodynamic processes in seismic prone-zones, in problems
of detecting internal zones of media with changes or redistribution of tec-
tonic stresses, one should consider the problem of interrelation between the
variations of parameters of the vibroseismic wave field and the variations
of medium parameters in internal zones, which affect the characteristics of
waves passing through these zones.

Below, some results of mathematical modeling of vibroseismic monitor-
ing with the use of a stationary wave field formed in the medium at long
radiation of harmonic signals by a vibrator with constant characteristics,
such as frequency, amplitude, and phase, are presented.

It is possible to distinguish two main problems (direct and inverse), of
modeling the monitoring with the use of stationary harmonic wave fields.
The direct problem is in the determination of changes in the characteris-
tics of a stationary wave field recorded at the surface with appearance of
changes in the density and velocity of seismic waves in some internal zone of
the medium. Also, it is the determination of the relation between the quan-
titative changes in the amplitudes and phases of oscillations recorded at the
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surface and the geometry and location of a zone of changes in the medium
and the magnitude of changes in the elastic characteristics. For the vibro-
seismic monitoring method and organization of an observation system, it is
important to determine the geometry of a zone of maximum changes in the
amplitude-phase characteristics of the surface field depending on the mutual
location of the vibrational source and the zone of changes in the medium.
The inverse problem is associated with determination of the geometry of
the zone of changes inside the medium and the quantitative changes in the
elastic characteristics based on changes in the amplitudes and phases of the
stationary harmonic field recorded at the surface.

1. A model and a system of equations

The method to monitor dilatant zones presented in [1, 2] is shown schemat-
ically in the figure. In the general case, to determine the relation between
variations of a field and those of parameters of dilatant zone, it is necessary
to calculate the full wave field. This can be done only numerically even for
relatively simple models of the medium and the geometry of the zone of
parameter changes.

To obtain analytical estimates of the method sensitivity, let us consider
the direct problem of vibroseismic monitoring of changes of elastic char-
acteristics in the Earth’s crust interior zone in approximation of the wave
equation and a model of the “Earth’s crust-mantle system” in the form of an
elastic layer in an elastic half-space with different velocities of elastic waves.
We assume the vibrational source to be a point and to operate in the har-
monic mode with a constant oscillation frequency. The zone of changes of
characteristics in the medium is taken to be spherical with a radius from
several fractions to several wavelengths (see the figure).

Calculation scheme: V –– vibrator, S –– seismometer at a recording point,
Z –– a zone of the medium parameters changes
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The system of equations with boundary conditions has the following
form: 
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where u(~r, t), u1(~r, t) are the displacement functions in the layer and half-
space, c, c1 are the velocities of waves in the layer and half-space, F0, ω are
the intensity and frequency of the point harmonic source, and H is the layer
thickness.

The wave equations and boundary conditions for the model “Earth’s
crust–mantle” take into account the presence of a harmonic source in the
layer, the absence of stresses on the free surface, and the equality of stresses
and velocities at the layer–half-space interface.

For the wave field changes caused by small changes of the velocities of
seismic waves in some area V , the wave equation and boundary conditions
will have the following form, accurate to the second order terms [3]:
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(2)

where δu(~r, t), δu1(~r, t) are the variations of solutions for displacements in
the layer and half-space, δc is the variation of wave velocity in the area V
located in the layer. In the case of a spherical area, it is characterized by
the coordinates of the center R0 and a radius r0.

Thus, distortions of the wave field that occur with appearance of an
area of small changes of seismic waves velocity are described by the wave
equations for the initial medium with a volume source in the area V . The
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function in the right-hand side of (2) describes the density of the 3D vol-
ume source. The density is proportional to the product of the velocity
change into the initial solution of the field obtained for the vibrational source
F0δ(~r) · e−iωt. It is not equal to zero only in the area V .

2. Solution for the initial field in the ray approximation

The initial solution for the displacement field of the point vibrational source
in a layer in the half-space for an unpertubed medium can be represented as
ray approximation. It is a superposition of spherical waves that had multiple
reflections from the free surface and the layer–half-space interface
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(3)

where ~k1, ~k2 are the vectors of the waves multiply reflected from the free
surface and a half-space, m is multiplicity of reflections from the half-space,
β, α1, α2 are factors of reflection from the free surface and interface, ϕ1, ϕ2

are the phase shifts at supercritical reflection from the interface. For the
free surface, the reflection factor for displacements is β = −1.

The reflection and phase shift factors are given by the following Fresnel
formulas [4]:
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here i = 1, 2 is the subscript for different waves in (4.31).

3. Solution for wave field variations

It is necessary to know the solution in the area V to solve problem (2). If a
radius of the spherical area of the parameter changes is much less than the
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distance to the vibrational source, r0 ≤ R0, the spherical waves from (3) in
this area can be approximately considered as locally plane ones. For this,
in (3), in the denominators describing a spherical divergence of waves and in
the formulas determining wave vectors, the radius-vector R0 of the sphere
center is used as radius-vector r. Thus, the solution u(~r, t) to problem (3)
is as follows:

u(~r, t) =
∞∑

j=1

Aj exp(i~kj~r − iωt+ iψj) for ~r ∈ V, (5)

where Ai, ~k1, ~k2, ψi are the amplitudes of waves, wave vectors, and phases
of the plane waves determined from (3).

Let us consider the solution of the first wave equation from (2) for the
case when the displacement field in the right-hand side is a single plane
wave propagating along the axis x. This solution is not equal to zero only
in the spherical area V . Sources of such a type are called the traveling-wave
antennas in the theory of antennas, and are used in hydro-acoustics and a
radio-location. In our case, the area of parameter changes forms variations
of the wave field as a 3D volume traveling-wave antenna.
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The field in the direction under the angle θ with the axis X (a directional
pattern) is determined as the integral of the elementary point sources field
in the area V , with allowance for their amplitudes and phases at each point
of this area. The field from an elementary volume dx dy dz is given by the
relation
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)
, (7)

where the term k(x cos θ+z sin θ) takes into account the phase shift relative
to the centre of the sphere.

In the case when the area V is a sphere x2 + y2 + z2 ≤ r0, the integral
determining the directional pattern u(θ) is as follows:
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Thus, the wave field variations formed by the spherical area in the case
of a harmonic plane wave can be approximated at distances greater than
the area size by the following expression:
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where ~r is the coordinate of the point relative to the area center and θ is
the angle between the vector ~r and the axis x.

In expression (9), the angle-dependent function determines a beam pat-
tern of a virtual source determining the wave field variations. For the ratios
r/λ = 0.1, a beam pattern is close to a circular one, which corresponds to
the case of wave diffraction on a small inclusion. As the ratio r/λ increases,
the property of directivity of a maximum of field variations along the passing
wave ray manifests itself, which corresponds to the ray model.

It is of interest to consider some limiting cases of the solution to (9).
1. If the size of the area V is much less than a wavelength, the directional

pattern will not depend on the angle, i.e., a small area of the parameter
changes produces field variations as a point source. This is a well-known
effect of diffraction with small inclusions:

r0 → 0 or θ → 0,

δu(~r, t) → 2δcω2A0

rc3
4πr30

3
exp(ikr − iωt).

(10)

2. For an area of any finite size, the wave field variations along the axis
x have a maximum value, which is given by the same relation (10). That is,
along the axis x, the traveling-wave source radiates as a single point source
with an intensity proportional to the volume. This is the basic property of
the traveling-wave antennas.

3. In the case when the area size increases in comparison with a wave-
length, the directional pattern is sharply directed. A maximum in the direc-
tion of the axis x remains unchanged. The radiation in all other directions
decreases because of a large value of the denominator in formula (9).

As shown above, the wave field in the area of parameter changes can
be considered as superposition of locally plane waves (3) and (5). For each
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plane wave, the field perturbation by a spherical area with a velocity change
is determined by (9). Therefore, the total variations of the wave field will
be produced by the area as sum of sources with their own amplitudes and
directional patterns:
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where Aj are the amplitudes of waves from (5), θj is the angle between the
wave vector ~kj and the vector of direction to the recording point from the
sphere center (~r − ~R0), and ψj are the initial phases of constituent waves
from (5).

Solution (11) can be considered as first approximation of determination
of variations of the stationary wave field caused by the presence of an area
with small velocity changes in the layer. It takes into account the influence of
all the waves passing from a vibrational source through the area of parameter
changes. The field on the surface is determined by the choice of the vector ~r
with the zero component z. The following approximation is made taking into
account the presence of the free surface and the layer–half-space interface.
This can be done in the above-mentioned ray approximation to calculate an
unperturbed wave field.

The geometry change of the zone of wave field maximum variations at
the surface depending on the location of the zone of change in the medium
parameters, its dimensions, and wavelength of the harmonic signal was inves-
tigated in a series of calculations and analysis of solution (11). Numerical
solutions show that one can easily trace the character of displacement of
the zone of amplitudes variation maximum described above. This result is
important when planning experiments on the monitoring of seismic-prone
zones.

4. Analytical estimates of the monitoring method sensitivity
with stationary wave fields

The above problem of determining variations in the parameters of the sta-
tionary wave field with changing characteristics in the medium internal zone
makes it possible to obtain analytical estimates of sensitivity of the active
monitoring method in the model considered. Such estimates can be obtained
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when the main factors determining the problem solution are taken into ac-
count. These include geometrical parameters of location of the source and
receiver in the zone of changes and the allowance for the main waves with
the greatest contribution to the wave field. The figure at page 106 shows
the calculation scheme.

In experiments on the monitoring method, the wave field parameters at
the surface at a distance RV –S from the source and their variations caused
by changes in the medium are recorded. The greatest contribution to the
recorded wave field in the model taken is from the direct wave, whose am-
plitude with allowance for the spherical divergence law can be estimated
as

u =
A0

RV –S
, (12)

where A0 is a characteristic amplitude at the unit distance from the source
and RV –S is a vibrator–seismometer distance.

Variations of the amplitudes of the recorded field at the surface are de-
termined from (11). For a direct wave passing to the parameter changes
zone in the direction of maximum variations, they can be estimated as

δu =
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λ

)2

, (13)

where A0 is a characteristic amplitude at a unit distance from the source,
RV−Z is a distance between the vibrator and the parameter variation zone,
RZ−S is a distance from the parameter variation zone to the recording point
(seismometer), r0 is a radius of the parameter variation zone, λ is a wave-
length of the sounding signal, δc/c are relative variations of wave velocities
in the parameter variation zone, and α is a reflection factor lying within
0.15–1.0 for the model taken and the wave velocities in the core and the
mantle.

The relation between relative variations of the velocity in the parameter
variation zone and those of the amplitudes of the recorded signal is as follows:

δc
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δu
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RV –S · r0

)(
λ

r0

)2

. (14)

One can see from (14) that the relative variations of the velocity in the
parameter variation zone that can be determined by the active monitoring
method with the use of harmonic signals are proportional to those of the
recorded signal amplitudes. They are also proportional to the coefficient for
the relation between the typical (source–– receiver, source–– zone of parame-
ter variation, and the zone of parameter variation–– receiver) distances, and
the size of the parameter variation zone. In addition, they are proportional
to the square of the relation between a sounding signal wavelength and a



Estimation of sensitivity of the active monitoring method by harmonic signals 113

radius of the parameter variation zone and the reflection factor at the core-
mantle boundary.

The estimate obtained (14) is the one of sensitivity of the active monitor-
ing method with the use of harmonic signals and measurement of variations
of the stationary wave field. It makes it possible to obtain numerical es-
timates for possible values of velocity variations in the zone of parameter
variation, which can be determined from variations of the recorded ampli-
tudes of oscillations.

Experience shows that variations in the amplitudes of harmonic signals at
distances of 100–400 km from the vibrator at the existing microseismic noise
level can be determined with an accuracy of 10−2. Therefore, monitoring at
the frequency f = 6 Hz (wavelength λ = 1 km) and typical source-recorder
and source-zone of variation distances of 50–100 km, and for the zone of
parameter variation with a radius of 1–10 km, gives the following estimates
of possible determination of the relative variations in seismic wave velocities:

r0 = 1 km, δc/c = 10−2–10−3,

r0 = 10 km, δc/c = 10−5–10−6.
(15)

The obtained estimates (15) show that the sensitivity of the active mon-
itoring method is very high for seismologic methods. This proves its key
role in methods for tracing changes in the stressed-deformed state of the
medium in the earthquake preparation zone.
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