Bull. Nov. Comp. Center, Num. Anal., 12 (2003}, 49-55
© 2003 NCC Publisher

A programming instrument for
developing distributed applied systems
for the mathematical modeling*

V.I. Kozlov

1. Introduction

Modern problems of the mathematical modeling include a very wide range

of computational tasks. Those tasks are based on solving different problems
. of mathematical physics, especially, in engineering. Such systems can be

considered as passing of sets of data through the nodes of a graph. An

example of such a graph is presented in Figure 1.

Approximate
the task

Solve Task 1

Examine
results

[Solve Task 3) Solve Task 4

Prepare
input data

(Solve Task 2

Data Visual data
gathering resentation
P

Figure 1

Obviously, the resource requirements are different for each process of a
diagram. For example:

o Preparing the input data requires a usual desktop workstation;

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.

50 V.I. Kozlov

¢ Approximation of the original task can require a powerful computer
with single processor;

e Solving algebraic tasks requires a multiprocessor unit;

e The visual data presentation usually requires a powerful graphical
workstation.

As consequence of the above-said distributed computational modeling
systems must be designed as systems deployed on different computer units
with different operating systems. Now there are a few techniques allowing
development of such kinds of distributed systems. Here are the most famous:

¢ Microsoft COM/DCOM;
e CORBA;

¢ Sun Java beans;

All of them are based on the standard called Remote Procedure Call
(RPC), which can be used for developing distributed computational systems.
But all those technologies were designed for exchanging data in commercial
applications. They ultimately fit for developing the Web applications. In
addition, they require that each computational unit should realize the same
special protocol. Programming the protocol is a very hard task and in addi-
tion, not all programming languages support such technologies. So, our task
is to develop the system allowing the formation of the computational pro-
cess from independent executable modules, which could be run on different
computers, for solving a specific task of mathematical modeling.

2. Problem definition

Imagine, we have a set of executables for solving different tasks of compu-
tational mathematics (such as approximation of a 2D or a 3D domain: as
well as for eigenvalue problems, iterative solutions to algebraic equations,
etc.) distributed on a computer network. In this case, we can consecutively
run some of our modules by passing to them appropriate input data, which
were prepared (calculated) by the previous module. Naturally, we must use
some remote terminal protocol (such as telnet or Secure Shell) for running
executables and File Transfer Protocol (FTP) for transferring data between
‘computers. But, doing so is a very boring and complicated work. Instead,
we could develop a graph, each node being a description of computational
process. The description could consist of:

¢ The name of an executable;

e The IP address of the computer, where the executable is placed;

A programming instrument for developing distributed applied systems ... 51

e The name of the work directory for the executable;

e The name of a file with input data;

o The name and the password of the user on behalf of who the task can
be run;

o The description of the format of input data;

e Description of the format of output data.

At the second step, a program is developed, which will pass through a
computational graph and run the proper executable on the proper computer
with proper data. Of course, there are many other problems, for example,

development visual tools for working out a computational graph. But we
come to nothing more than the first two tasks.

3. Program realization
First of all, let us consider the types of a computational graph, to be realized:

o It is an oriented one;
e It can have a circuit;
o The graph has only one start node and one end node;

e Each node (excluding the start and the end ones) can have several in
branches and several outside of them;

e Each node has an out branch leading to the end node. This means the
exit due to the fail.

Realizing such a kind of a graph is very difficult, because we will use
some combination of simple graphs. This combination consists of graphs of
three levels. An example of the first level graph is shown in Figure 2.

Input data —b[Pmcess 1 H Process 2 H Process 3]

Final
message

»

Figure 2

52 V.I Kozov

4. “Global’f nodes

The main features of such a graph are:

1. It has only one start node and one finish node;

2. Each inner node has up to two in-branches and up to three out-
branches (we will call them “global nodes”);

3. One of the outer branches necessarily leads to the finish node (this
means that we can terminate the modeling at any moment).

The “global” nodes are mainly intended for defining possible paths of a
data flow. From a program standpoint this is a container of three objects.
Two objects are pointers to other “global” nodes. We will call them the
right exit and the left exit. The right exit corresponds to moving forward
through a graph. The left exit is a return to some previous node. The third
object determines the interfaces between the current “global” node and its
in and out nodes. We will call it the interface object.

5. Interface object being a graph as it is
The graph consists of four nodes, which we call “functional” (Figure 3):

1. Preparing data — this functional node is responsible for forming in-
put data for Calculation processes from output data of the previous
“global” node;

2. Calculation processes are a set of objects called Calculating unit.
These objects are considered below;

3. Gathering data — on this node we make up the output data set from
the output data of Calculating units;

4. Analyzing results — at this stage we make the decision, which node
will be next: the right exit, the left exit or the finish node.

All the programming work is made for this kind of an object. However
before explaining the “core” of this job we should discuss the roles for in-
terfaces between nodes. All such interfaces are based on the XML. When
some calculating process is included in the system the format of its input
and output data is described in the XML as Document Type Definition.
All program modules accomplishing a certain kind of an interface use the
DTD files for determining data transformation roles. So, for including some
calculating process in the modeling system we must do the following:

® Describe its input and output data in the XML;

A programming instrument for developing distributed applied systems ... 53

Preparing
Input data —»[data]

Calculation
processes

Gathering
output data

To a previous Analysing To a next
“global” node results “global” node

To the finish
node

Figure 3

e Develop the program transformation of incoming data in the input
data format for the calculating process;

¢ Develop the program transformation of output data in the XML doc-
ument;

¢ Develop the program estimation of the results of calculating process
for deciding which exit must be next.

As we can see, for including any calculating module in the system repos-
itory one should not make any changes in the module itself. It is very
important and useful for using the work results of different members of a
scientific group in the big application system. Now we are ready for the
discussion of calculating units.

6. Calculating unit

The calculating unit is a set of the information required for running an
executable:

o IP address of the computer, where an executable is placed;
» Working directory;
® The name of an executable;

e The name and the password of the user on whose behalf the executable
is run;

b4 -+ V.I Kodov

e The name of a file with input data;

¢ The name of a file for output data;

* The type of a remote terminal service (Telnet or Secure Shell);
* The port number for the remote terminal service;

® The command for running executable;

The FTP server port.

This information is sufficient for running any executable on any type
of computer with any type of operating system. Of course if our user has
resources on the computer.

7. State-of-the-art

Now we have Java classes encapsulating the “global” nodes and calculating
units. We have also developed the interface classes for some elementary
calculating processes and combined them for solving a thermostatic prob-
lem. Our experience proves that resources of a small scientific group can be
effectively combined in a powerful system for solution of different kinds of
applied tasks.

References
[1] Snider Y. Effective Programming TCP/IP. — SPB-Piter, 2002.

[2] Postel J., Reynolds J. File Transfer Protocol. — USC/Information Sciences
Institute, May 1985. - RFC 959.

(3] Tovar. Telnet Extended ASCII Option. — Stanford University-Al, July 1975. -
RFC 698.

[4] Crispin M. Telnet Logout Option. — Stanford University-Al, April 1977. —
RFC 727.

[5] Postel J., Reynolds J. Telnet Binary Transmission. — USC/Information Sci-
ences Institute, May 1983. - STD 27, RFC 856.

[6] Postel J., Reynolds J. Telnet Echo Option. - USC/Information Sciences Insti-
tute, May 1983. — STD 28, RFC 857.

[7] Postel J., Reynolds J. Telnet Suppress Go Ahead Option. — USC/Information
Sciences Institute, May 1983. —~ STD 29, RFC 858.

[8] Postel J., Reynolds J. Telnet Status Option. — USC/Information Sciences In-
stitute, May 1983. — STD 30, RFC 859.

A programming instrument for developing distributed applied systems ... 55

[9] Postel J., Reynolds J. Telnet Timing Mark Option. — USC/Information Sci-
ences Institute, May 1983. - STD 31, RFC 860.

[10] Postel J., Reynolds J. Telnet Extended Options — List Option. — USC/Infor-
mation Sciences Institute, May 1983. - STD 32, RFC 861.

[11] Waitzman D. Telnet Window Size Option. - BBN STC, October, 1988. -
RFC 1073.

[12] Hedrick C. Telnet Terminal Speed Option. — Rutgers University, December
1988. - RFC 1079.

[13] VanBokkelen J. Telnet Terminal Type Option. — FTP Software, Inc., February
1989. - RFC 1091. :

[14] Telnet Environment Option / Ed. D. Borman. - Cray Research, Inc., January
1993. - RFC 1408.

[15] Telnet Authentication Option / Ed. D. Borman. - Cray Research, Inc., January
1993. - RFC 1409.

[16] Gololobova S.P., Kozlov V.I. The on-line library of algorithms and program
ACCORD // NCC Bulletin. Series Numerical Analysis. — Novosibirsk: NCC
Publisher, 2002. - Issue 11. — P. 27-33.

