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LTL model checking of coloured Petri

nets based on net unfoldings

V. E. Kozura

In this paper, the model-checking algorithm from [22] is adapted to coloured Petri nets
(CPN) [9, 10]. The state-based semantics of LTL for CPN is given and the correctness of the
obtained approach is proven. It is also shown how to apply this model checking technique
to interval-timed CPN.

1. Introduction

Model checking is a well-known and useful method for verifying the prop-
erties of distributed systems. Unfortunately, this method faces the state
explosion problem. To avoid this problem, different approaches have been
developed, such as the stubborn set method, symbolic binary decision dia-
grams (BDD), methods based on partial orders, methods using symmetry
and equivalence properties of the state space, etc. [20].

In [18], McMillan has proposed an unfolding technique for PN analysis.
In his works, instead of the reachability graph, a finite prefix of maximal
branching process, large enough to describe a system, has been considered.
The size of unfolding is exponential in the general case and there are few
works which improve in some way the unfolding definitions and the algo-
rithms of unfolding construction [7, 11].

Initially McMillan has proposed his method for the reachability and
deadlock analysis (which has also been improved in the later work [17]).
J. Esparza has proposed a model-checking approach to unfolding of 1-safe
systems analysis [4] for the S4 logic. In [1], the model-checking technique
has been applied to timed PN. In [22], LTL-based model-checking on PN’s
unfolding has been developed. LTL model checking on PN unfoldings was
further developed in [2, 5, 6]. Unfolding of coloured Petri nets has been con-
sidered in the general case in [19] for using it in the dependence analysis
needed by the Stubborn Set method.

In papers [12, 13], the unfolding method, as it was developed for ordinary
Petri nets, has been applied to coloured Petri nets (in the way they are
described in [6, 7]). In [10], symmetry and equivalence specifications for
CPN are introduced. It was also shown in [12, 13] how to use the unfolding
technique taking into consideration symmetry or equivalence specifications.
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In papers [14, 15], the unfolding technique was applied to the interval-timed
CPN and to the CPN with the time structure presented in [10].

In this paper, the LTL model checking algorithm based on the net un-
folding from [22] is adapted to coloured Petri nets. It is also proven that
we can apply the same model-checking algorithm to the interval-timed CPN
and their unfoldings presented in [14, 15].

2. Coloured Petri nets

In this section, we briefly remind the basic definitions related to coloured
Petri nets and describe the subclass of colours we will use in the paper. A
more detailed description of CPN can be found in [9].

A multi-set is a function m: S→N , where S is a usual set and N is the
set of natural numbers. In the natural way we can define operations, such
as m1 + m2, n·m, m1 − m2, and relations m1≤m2, m1<m2. Also |m| can
be defined as |m| =

∑

s∈Sm(s). Let V ar(E) define the set of variables of
an expression E, and Type(E) define the type of an expression E. Notation
AMS means a multiset over the set A.

A coloured Petri net (CPN) is the net N = (S,P, T,A,N,C,G,E, I),
where S,P, T,A are the sets of colours, places, transitions, and arcs such
that P∩T = P∩A = T∩A = ∅; N is a mapping N : A → (P×T )∪(T×P );
C is a colour function C : P→S; G is a guard function such that for all
t∈T Type(G(t)) = bool and Type(V ar(G(t)))⊆S; E is a function defined
on arcs with Type(E(a)) = C(p)MS , where p is the place from N(a) and
Type(V ar(E(a)))⊆S and I is an initial function defined on places such that
for all p∈P Type(I(p)) = C(p)MS .

A(t), V ar(t), A(x, y)andE(x, y) can be defined in a natural way.

A binding b is a function from V ar(t) such that b(v)∈Type(v) andG(t)〈b〉.
The set of bindings for t will be denoted by B(t). A token element is a
pair (p, c), where p∈P and c∈C(p). The set of all token elements is de-
noted by TE. The set of m token elements (p,c) is denoted by m′(p, c). A
binding element is a pair (t, b), where t∈T and b∈B(t). The set of all bind-
ing elements is denoted by BE. A marking M is a multi-set over TE. A
step Y is a multi-set over BE. A step Y is enabled in the marking M , if
for all p∈P

∑

(t,b)∈Y E(p, t)〈b〉≤M(p) and a new marking M1 is given by
M1(p) = M(p)−

∑

(t,b)∈Y E(p, t)〈b〉+
∑

(t,b)∈Y E(t, p)〈b〉.

The subclass of coloured Petri nets presented in [12, 13] is large enough to
describe many interesting systems and still allows us to build a finite prefix of
its branching process. The detailed description can be found in [12]. The set
of basic colour domains is obtained from the types of Standard ML (SML)
[9] by considering only finite colour domains s∈S. All functions defined in [9]
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which have the above described classes as their domains are allowed in our
subclass. The CPN satisfying all the above-mentioned requirements is called
S-finite.

A marking M of a CPN is n-safe if |M(p)|≤n for all p∈P . A CPN is
called n-safe if all of its reachable markings are n-safe. 1-safe net is also
called safe. A preset of an element x∈P∪T denoted by •x is the set •x =
{y∈P∪T | ∃a : N(a) = (y, x)}. A postset of x∈P∪T denoted by x• is the
set x• = {y∈P∪T | ∃a : N(a) = (x, y)}.

The CPN considered in this paper are the CPN satisfying three addi-
tional properties:

– the number of places and transitions is finite,

– the CPN is n-safe,

– the CPN is S-finite.

3. Branching process of coloured Petri nets

Let N be a Petri net. We will use the term nodes for both places and tran-
sitions. The nodes x1 and x2 are in conflict, denoted by x1♯x2, if there exist
transitions t1 and t2 such that •t1∩

•t2 6=∅ and (t1,x1) and (t2,x2) belong to
the transitive closure of N (which we denote by Rt). The node x is in self-
conflict if x♯x. We will write x1≤x2 if (x1, x2)∈Rt and x1 < x2 if x1≤x2 and
x1 6=x2. We say that x co y, or x‖y, if neither x < y, nor x > y, nor x♯y.

An Occurrence Petri Net (OPN) is an ordinary Petri net N = (P, T,N),
where

1. P, T are the sets of places and transitions,

2. N⊆(P×T )∪(T×P ) gives us the incidence function,

satisfying the following properties:

1. for all p∈P |•p|≤1;

2. N is acyclic, i. e., the (irreflexive) transitive closure of N is a partial
order;

3. N is finitely preceded, i. e., for all x∈P∪T the set {y∈P∪T | y≤x}
is finite, which gives us the existence of Min(N), the set of minimal
elements of N with respect to Rt;

4. no transition is in self-conflict.

Let N1 = (P1, T1, N1) and N2 = (P2, T2, N2) be two Petri nets. A ho-
momorphism h from N2 to N1 is a mapping h : P2∪T2 → P1∪T1, such
that
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1. h(P2)⊆P1 and h(T2)⊆T1;

2. for all t∈T2 h|•t =
•t→•h(t), for all t∈T2 h|t• = t•→h(t)•.

Now we give the main definition of the section. This is the first novelty of
the paper, a formal definition of a branching process for coloured Petri nets.
After the following definition, the existence result is given.

Definition 1. A branching process of a CPN

N1 = (S1, P1, T1, A1, N1, C1, G1, E1, I1)

is a tuple (N2, h, ϕ, η), where N2 = (P2, T2, N2) is an OPN, h is a homomor-
phism fromN2 toN1, ϕ and η are the functions from P2 and T2, respectively,
such that

1) ϕ(p)∈C1(h(p));

2) η(t)∈B(h(t)).

Other requirements are listed below:

3) for all p1∈P1
∑

p∈Min(N2) | h(p)=p1
ϕ(p) = M0(p1);

4) G1(h(t))〈η(t)〉 for all t∈T2;

5) ∀t′∈T2 | (∃a∈A1 : N1(a) = (p, t) and h(t′) = t) =⇒

E1(a)〈η(t
′)〉 =

∑

(p′∈•t′ | h(p′)=p)ϕ(p
′),

∀t′∈T2 | (∃a∈A1 : N1(a) = (t, p) and h(t′) = t) =⇒

E1(a)〈η(t
′)〉 =

∑

(p′∈t′• | h(p′)=p)ϕ(p
′);

6) If (h(t1) = h(t2)) and (η(t1) = η(t2)) and (•t1 =
•t2), then t1 = t2.

Using the first two properties, we can associate a token element (p,c) of
N1 with every place in N2 and the binding element (t,b) of N1 with every
transition in N2. So we can further consider the net N2 as containing the
places, which we identify with token elements of N1, and transitions, which
we identify with binding elements of N1. So we sometimes use them instead,
like h((t, b)) = t means that for some t′ h(t′) = t and η(t′) = b or p∈•(t, b)
means p∈•t′ and h(t′) = t and η(t′) = b. Analogously, we can consider
(p, c)∈P2 as p′∈P2 and h(p′) = p and ϕ(p) = c. Also, h(p, c) = p and
h(t, b) = t.

It can be shown that any finite CPN has a maximal branching process
(MBP) up to isomorphism (Theorem 1). We can declare existence of the
maximal branching process when considering the algorithm of its generation.
The algorithm is described in [12] and the following theorem is proven there.

Theorem 1. For a given CPN N, there exists a maximal branching process
MBP(N).
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This branching process can be infinite even for the finite nets if they are not
acyclic. We are interested in finding a finite prefix of a branching process
large enough to represent all the reachable markings of the initial CPN. This
finite prefix will be called an unfolding of the initial CPN.

4. Unfoldings of CPN

A configuration C of an OPN N = (P, T,N) is a set of transitions such that
t∈C =⇒ for all t0≤t , where t0∈C and for all t1, t2∈C ¬(t1♯t2). A set X0⊆X

of nodes is called a co-set, if for all t1, t2∈X0: (t1 co t2). A set X0⊆X of nodes
is called a cut, if it is a maximal co-set with respect to the set inclusion.

Finite configurations and cuts are closely related. Let C be a finite con-
figuration of an occurrence net, then Cut(C) = (Min(N)∪C•)\•C is a cut.

Let N1 = (S1, P1, T1, A1, N1, C1, G1, E1, I1) be a CPN and MBP(N1) =
(N2, h, ϕ, η), where N2 = (P2, T2, N2), be its maximal branching process.
Let C be a configuration of N2. We define a marking Mark(C) which is a
marking of N1 such that Mark(C)(p) =

∑

(p′∈Cut(C) | h(p′)=p)M2(p
′).

Let N be an OPN. For all t∈T the configuration [t] = {t′∈T | t′≤t} is
called a local configuration. (The fact that [t] is a configuration can be easily
checked).

Let us consider the maximal branching process for a given CPN. It can
be noticed that MBP(N) satisfies the completeness property, i. e., for every
reachable marking M of N there exists a configuration C of MBP(N) ( i. e.,
C is the configuration of OPN), such that Mark(C) = M . Otherwise we
could add a necessary path and generate a larger branching process. This
would be a contradiction with the maximality of MBP(N).

Now we are ready to define three types of cutoffs used in the definition
of an unfolding. The first two definitions for ordinary PNs can be found in
[4, 18]. The last is the definition given in [11].

Definition 2. Let N be a coloured Petri net and MBP(N) be its maximal
branching process. Then

1. a transition t∈T of an OPN is a GT0-cutoff, if there exists t0∈T such
that Mark([t]) = Mark([t0]) and [t0]⊂[t];

2. a transition t∈T of an OPN is a GT-cutoff, if there exists t0∈T such
that Mark([t]) = Mark([t0]) and |[t0]| < |[t]|;

3. a transition t∈T of an OPN is a EQ-cutoff, if there exists t0∈T such
that

(a) Mark([t]) = Mark([t0]),

(b) |[t0]| = |[t]|,
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(c) ¬(t‖t0),

(d) there are no EQ-cutoffs among t′ such that t′‖t0 and |[t′]|≤|[t0]|.

Definition 3. For a coloured Petri net N, an unfolding is obtained from
the maximal branching process by removing all the transitions t’, such that
there exists a cutoff t and t < t′, and all the places p∈t′•. If Cutoff =
GT0(GT)-cutoffs, then the resulted unfolding is called GT0(GT)-unfolding.
GT0(GT)-unfolding is also called the McMillan unfolding. If Cutoff = GT-
cutoffs ∪ EQ-cutoff, then the resulted unfolding is called EQ-unfolding.

It has been shown that the McMillan unfoldings are inefficient in some
cases. The resulting finite prefix grows exponentially, when the minimal finite
prefix has only a linear growth. The following proposition can be formulated
for these three types of unfoldings ([12]).

Proposition 1.

size(EQ-unfolding) ≤ size(GT-unfolding) ≤ size(GT0-unfolding).

The following theorem presents the main result of this section ([12]).

Theorem 2. Let N be a CPN. Then for its unfoldings we have:

1. EQ-unfolding, GT-unfolding and GT0-unfolding are finite.

2. EQ-unfolding, GT-unfolding and GT0-unfolding are safe, i. e., if C
and C’ are configurations, then C⊆C ′ =⇒ Mark(C ′)∈[Mark(C)〉.

3. EQ-unfolding, GT-unfolding and GT0-unfolding are complete, i. e.,

M∈[M0〉 =⇒ there exists a configuration C such that Mark(C) = M.

In the general case, the algorithm of an unfolding construction proposed
in [18] and applied to coloured Petri nets in [12] has an exponential com-
plexity. The algorithm from [11] is rather efficient in the speed of unfolding
generation. In the case of an ordinary PN, it gives the overall complexity
O(NP ·NT ), where NP and NT are the numbers of places and transitions
in EQ-unfolding. This algorithm was also transferred to coloured Petri nets
[12] and a close estimation holds if we do not take into consideration the
calculation complexity of arc and guard functions. In this case, we obtain
O(NP ·NT ·B), where B = max{|B(t)| : t∈TCPN}.

5. Model checking of CPN

5.1. LTL logic

Let us briefly describe here the basic ideas concerned with the LTL logic.
Let R be the set of atomic propositions.
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Definition 4. The set of LTL-formulae is defined inductively as follows. If
φ = a ∈ R, then φ is a formula. If φ and ϕ are formulae, then φ∨ϕ, φ∧ϕ, ¬φ,
Xφ, and φUϕ are formulae. Another operators are defined in the following
way.

✸φ = trueUφ

✷φ = ¬✸¬φ

The set of propositions from φ is denoted by 〈φ〉. We interpret the formula
φ on w-words over the alphabet 2R. A w-word ξ over the 2R is an infinite
sequence ξ = a0a1..., where ai∈2

R for all i. The proposition a∈R holds at
ai iff a∈ai. We denote by ξ|=φ the fact that the w-word ξ = a0a1... satisfies
φ. This is defined inductively as follows.

Definition 5.

ξ |= π iff π ∈ ξ(0)

ξ |= ¬φ iff not ξ |= φ

ξ |= φ ∧ ϕ iff ξ |= φ and ξ |= ϕ

ξ |= Xφ iff ξ(1) |= φ

ξ |= φUϕ iff ∃i ≥ 0 ξ(i) |= ϕ and ξ(j) |= φ for all j < i.

By Lφ we denote the set of w-words satisfying φ. According to the approach
of the automata theory, we consider the Buechi automaton as representation
of a given LTL formula.

Definition 6. A Buechi automaton over the alphabet 2R is a quadruple
A = (Q, q0, δ, F ), where Q is a finite set of states, q0 is an initial state,
δ⊆Q×2R×Q is the transition relation, and F⊆Q is a set of accepting states.

Definition 7. A run of A on the w-word ξ is an infinite sequence σ = q0q1...

such that for all i≥0 (qi, ξ(i), qi+1)∈δ. A run is called accepting if an accepting
state occurs in δ infinitely often. Automaton A accepts the word ξ iff there
exists an accepting run of A on ξ.

Let L(A) denote the set of all w-words accepted by A.

Theorem 3. ([21]). Let φ be an LTL formula. There exists a Buechi au-
tomaton Aφ, such that L(Aφ) = Lφ.

There are some efficient methods for constructing the automaton Aφ from
a given formula φ, for example, the method proposed in [8]. Having the
system as an automaton A over the alphabet 2R and the formula φ, we
construct, according to the automata-theoretic approach, the product of A
and the Buechi automaton A¬φ. The basic idea is that we make a transition
(〈a, b〉, 〈a′, b′〉), if (a, T, a′) belongs to the transition relation of the automata
A and (b, T, b′) belongs to the transition relation of the automata A¬φ.
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It holds for this construction that the product contains no cycle including
an accepted state iff the system automaton A satisfies φ.

Below we define the state-based LTL semantics for coloured Petri nets.
Let us remind that we consider only n-safe CPN. The set of atomic proposi-
tions is identified with the set n · TE = TE× TE × ...× TE, where n is the
number from the n-safeness condition and TE is the set of token elements.
A proposition m′(p, c) holds at the state M iff m′(p, c)∈M(p).

The sequence of steps M0[t0, b0〉M1[t1, b1〉M2... satisfies φ iff the w-word
M0M1M2... belongs to Lφ. We say that the marking M satisfies φ if any
sequence of steps M [t, b〉M1[t1, b1〉M2... satisfies φ. In this case we write
M |=φ. The CPN N satisfies φ if M0 satisfies φ. We write this as N |=φ. If
(p, c) ∈ 〈φ〉, then sometimes we will say for convenience that p ∈ 〈φ〉.

5.2. Model checking technique

The model checking problem requires the detection of cycles that contain
accepting transitions. To find such a cycle, we use the algorithm proposed
in [22]. We suppose the CPN N to be ”deadlock free”. The effective method
of finding the deadlocks using the unfoldings of CPN is described in [12]. If
the obtained deadlocks have some system meaning, for example, the final
state of getting all the sent messages in communicational protocols, we can
easily modify the system CPN by adding some transitions and eliminate the
deadlock states.

The problem is solved in two steps. First, the direct graph G = (V,Edg)
is constructed, where V = Off is the set of cut-off events of the prefix, and
Edg is the set of edges. An edge e→e′ means that the state [e′] is reachable
from the state [e]. Some of the edges will be labelled by a. If the edge e→e′

is labelled by a, then this means that on the partial computation from [e]
to [e′] an accepting transition occurs.

The second step is to apply standard algorithms on G for detecting a
strongly connected component or a cycle containing an a-labelled edge.

We will show how to adapt the automata-theoretic approach and the
approach proposed in [22] to the LTL model checking of coloured Petri nets.

Let us have a CPN N = (S,P, T,A,N,C,G,E, I) and an automaton
A¬φ = (Q, q0, δ, F ).

We consider the automaton A¬φ to be a CPN in the following way. The
set of states is considered to be the set of places. The colour set consists
only of one colour element /color H=unit with e/. Each edge of the obtained
automaton net is considered to be a transition without any guard condition.
Initial marking A0 has only one token at the initial state q0. Each transition
is considered to be labelled with n-safe marking consisting of token elements
(p, c) ∈ 〈φ〉.
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Definition 8. Let us have a CPN N = (S,P, T,A,N,C,G,E, I) and an
automaton A¬φ = (Q, q0, δ, F ) considered to be a CPN. The Prod is con-
structed so that the automaton net and the system alternate their moves.

1. First we add a complementary place p′ for each place p ∈ P of the
system CPN, so that (p, c)∈〈φ〉 for some c∈C(p). This is done to test
the marking M when the transition of the automaton net labelled
by M is fired. For the complementary place we propose M(p′) =
∑

{c|(p,c)∈〈φ〉}(n
′(p, c)\M(p)). The set of such complementary places is

denoted by P ′. The set Obs(phi) = {p, p′ | (p, c)∈〈φ〉} is called the set
of observable places.

2. We add the places sf and ss to organize the alternation of the moves.
The colour set for these places is C(sf) = C(ss)=/color H=unit with
e/. This models the simple (uncoloured) places. The whole set of places
is P∪P ′∪Q∪{sf , ss}.

3. For each transition t of the automaton net labeled by M , we add the
arcs ap,t and at,p as described below:

N(ap,t) = (p, t) ∀p ∈ Obs(phi), N(at,p) = (t, p) ∀p ∈ Obs(phi)

E(ap,t) = E(at,p) = m′(p, c) ∀p such that (p, c) ∈ 〈φ〉, where m is the
index of (p, c) in M .

For complementary places E(ap,t) = E(at,p) = (n−m)′(p, c).

4. For each transition t of the automaton net we add the arcs at,s and
at,f as described below:

N(at,s) = (t, ss), N(at,f ) = (sf , t), E(at,s) = E(at,f ) = e.

For each transition T of the system CPN, we add the arcs aT,s and
aT,f as described below:

N(aT,s) = (ss, T ), N(aT,f ) = (T, sf ), E(aT,s) = E(aT,f ) = e.

5. For each transition T of the system CPN such that for some (p, c) ∈ 〈φ〉
p ∈ •T or p ∈ T •, we add the arc aN,p for each such place p. N(aT,p) =
(T, p) if p ∈ •T , and N(aT,p) = (p′, T ) otherwise. If p ∈ •T and p ∈ T •,
then we add both arcs. The arc expressions are E(aT,p) = E(p, T ) in
the case N(aT,p) = (T, p), and E(aT,p) = E(T, p) otherwise.

6. The initial marking is M0 ∪M ′
0 ∪ {q0} ∪ {sf}, where M0 is the initial

marking of the system CPN, M ′
0(p

′) =
∑

{c|(p,c)∈〈φ〉}(n
′(p, c)\M0(p)),

{q0}∪ {sf} means that we put initially one token in the places q0 and
sf .

Let γ = M0[t0, b0〉M1[t1, b1〉... be the sequence of steps in Prod. For each
state Mj of γ, let Pj = Mj ∩ P be the restriction of Mj onto system
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places. The projection of γ onto system places is defined as Proj(γ) =
Pi0[ti0, bi0〉Pi1[ti1, bi1〉.... The sequence Pi0Pi1Pi2... is denoted by ProjM (γ).

Proposition 2. Let Prod be the product of a CPN N and A¬φ. N satisfies
φ iff Prod contains no cyclic sequences of steps including the places from
A¬φ corresponding to accepting states.

Proof. Follows from the construction of Prod and the above-described state-
based semantics of LTL for CPN.

For the marking M of the system CPN we consider the submarking
Mobs consisting of places from 〈φ〉. From the LTL-semantics, Mobs |= φ

⇔ M |= φ. By construction of Prod, the submarkings Mobs are controlled
by the automaton net. If we have a cycle containing some accepting state
in γ, then the w-word Mobs

i0 Mobs
i1 Mobs

i2 ... satisfies ¬φ. This means that the
sequence of steps Mi0Mi1Mi2... also satisfies ¬φ.

Otherwise, if the system net N doesn’t satisfy φ, then there exists a se-
quence of steps Mi0Mi1Mi2... satisfying ¬φ. By construction of the automa-
ton net, the accepting w-word Mobs

i0 Mobs
i1 Mobs

i2 ... satisfying ¬φ corresponds
to some sequence of steps of the automaton net. While we consider only
n-safe and S-finite CPN, the infinite sequence of steps must contain at least
one cycle. While the considered sequence of steps of the automaton net con-
tains infinitely many accepting states, there must be an accepting place in
the cycle. ✷

As it was noticed in [22], strictly sequential behaviour of the obtained pro-
duct ruins the benefits of any partial order representation. It was proposed
to restrict the considered properties to stutter-invariant properties. In this
case it is sufficient to observe only all the visible transitions. In this paper
we also restrict ourselves to stutter-invariant properties. The purpose of this
article is to show the possibility of applying the model-checking procedure
to coloured Petri nets.

In [16] it has been shown that stutter-invariant properties are expressed
by the ”next free” fragment of LTL. This is LTL-logic without the next step
operator X. In this fragment it is impossible to distinguish between the word
ξ = x0x1... and the word ξ′ similar to ξ except that any of xi can repeat
finitely often. Such two words will be called stutter-equivalent.

Lemma 1. ([16]) If φ is a next-free formula and ξ and ξ′ are stutter-
equivalent w-words, then ξ |= φ ≈ ξ′ |= φ.

In the construction of the product, only the visible transitions of the system,
i. e., the transitions which have a common arc with an observable place, are
synchronized with the transitions of the automaton net. As noticed in [22],
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in this construction it is possible that some run ξ satisfies ¬φ but is not
accepted. This is the case when finitely many visible transitions occur in ξ.

However, as also in [22], we can prove the following theorem, which allows
us to apply the model-checking procedure to coloured Petri nets.

Proposition 3. If γ is a sequence of steps of Prod containing infinitely
many visible transitions, then the projection Proj(γ) of γ satisfies ¬φ iff γ

is accepting.

Proof. While we have infinitely many visible transitions, we can apply the
same considerations, as in the case of the fully synchronized Prod. ✷

In this paper, we apply the model-checking approach from the paper [22]
to CPN. We apply the 2-phase model-checking algorithm to unfoldings of
CPN.

Phase 1.

Having the product of a given CPN and the automaton CPN A¬φ, we
build a graph T as described above. Additionally some of the edges will be
labelled by b. e→be′ means that, on the partial computation from [e] to [e′],
some transition from the automaton A¬φ occurs. The edges of the graph can
be labelled by either a or b or a, b.

Now we can apply any algorithm of finding the maximal strongly con-
nected components (scc). If we have at least one scc containing a-labelled
transition, then we have an accepting run and can construct the sequence
of steps satisfying ¬φ.

Phase 2.

We delete each scc containing a- or b-labelled edges. In the remaining
cycles for each cutoff e we can obtain the last reached automaton state qe =
Mark([e])∩Q and the last reached observable submarking Pe = Mark([e])∩
Obs(φ). Now, for each such cutoff e, we can, using only the automaton net,
define if the marking Pe allows an accepting cycle at state qe. If such a cycle
is found, then we can reconstruct the sequence of steps satisfying ¬φ.

6. Model checking of timed CPN

6.1. Unfolding of interval-timed CPN

In this section, we use the technique of unfolding of ITCPN described above.
We show the possibility of applying the above-described model-checking
approach to ITCPN. We only require from a CPN to be finite, n-safe and
S-finite.
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Definition 9. An interval-timed CPN (ITCPN) is a pair NIT = (N,χ),
where N is a CPN and χ is a transition inscription χ : T→t = Nat×Nat,
where Nat is the set of natural numbers (t consists of nonnegative integer
intervals).

For χ(t) = (eft(t), lf t(t)), eft(t) and lf t(t) are called the earliest firing
time and the latest firing time of t, respectively.

Definition 10. A state of an interval-timed CPN N is a pair (M, I), where
M is a marking of N and I is a clock vector I : T→(N∪{$}), such that
either I(t) = $ or I(t) < lft(t) for all t∈T . The symbol $ indicates that the
corresponding transition is not enabled. A state is called consistent, if for all
t∈T I(t)6=$⇐⇒t∈Enabled(M). Only the consistent states will be considered
in this paper. For an integer q > 0 and for all t∈T , (I + q) is defined by
(I + q)(t) = I(t) + q if t∈Enabled(M) and $ otherwise.

Definition 11. The initial state (M0, I0) is defined by the initial marking
M0 and the initial clock vector I0, so that I0 = 0 if t∈Enabled(M0) and $

otherwise.

Definition 12. Two types of events are considered:

1. Tic-event: tic is firable at the state (M, I), if for all t∈T I(t) < lft(t).
In this case, the successor state (M1, I1) is given by M1 = M and
I1 = (I + 1). The tick-event is denoted by (M, I)→tic(M1, I1).

2. Occur-event: An occur event is fireable at the state (M, I), if some tran-
sition t may occur with the binding element b, i. e., if (t, b)∈Enabled(M)
and eft(t)≤I(t)≤lf t(t). In this case, the successor state (M1, I1) is
given by M1(p) = M(p)− E(p, t)〈b〉+ E(t, p)〈b〉 and I1(t

′) is

$, if t∈Enabled(M1),
0, if t′ = t and t′∈Enabled(M1),
0, if t′ 6=t and t′∈Enabled(M1) and t′∈Enabled(M ′),

where M ′(p) = M(p)−E(p, t) < b >,

I(t′) otherwise.

An occur event is denoted by (M, I)→(t,b)(M1, I1).

Let us notice that the initial state is consistent and both occur- and tic-
events preserve the consistency property. Now we define the time expansion
of an interval-timed CPN — X(ITCPN) which captures the behaviour of
the initial ITCPN and is an ordinary (untimed) CPN. In general, the size
of X(ITCPN) may be exponential in the size of the initial ITCPN, but
the unfolding of ITCPN can be generated without constructing X(ITCPN).
However, we need the definition of a time expansion of an interval-timed
CPN to prove existence of ITCPN’s unfolding.
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Definition 13. A time expansion of an interval-timed CPN NIT = (N,χ)
is defined in the following way.

1. For every place p∈P , a place pc (complementary place) is introduced
so that C(p) = C(pc). The set of all complementary places is denoted
by P c.

2. For each transition t∈T , a new place pt is introduced so that C(pt) =
int with − 1...lf t(t), where the symbol $ is denoted by −1. The set of
such places is denoted by P t.

3. The marking PL(I) is defined in the following way: PL(I)(p) = I(t),
if p = pt, and empty otherwise. The state (M, I) of the initial ITCPN
is represented by the state X(M, I) = M∪M c∪PL(I), where for all
pc∈P c M c(pc) = n′C(p)\M(p) and n is the constant from the n-safety
condition of the initial CPN.

4. For each marking M of ITCPN, a new transition tic(M) is intro-
duced so that the preset and postset of tic(M) are the set M∪P c∪P t.
(This means that •tic(M)∩P = {p|M(p)6=empty}. It is denoted by
•tic(M)∩P = M ). The arc expressions are:

∀p(M(p)6=empty) : N(a) = (p, tic(M, I))⇒E(a) = M(p);

∀pc∈P cN(a) = (pc, tic(M, I))⇒E(a) = n′C(p)\M(p);

∀pt∈P tN(a) = (pt, tic(M, I))⇒E(a) = it, if t∈Enabled(M), and empty
otherwise;

∀p(M(p)6=empty) : N(a) = (tic(M, I), p)⇒E(a) = M(p);

∀pc∈P cN(a) = (tic(M, I), pc)⇒E(a) = n′C(p)\M(p);

∀pt∈P tN(a) = (pt, tic(M, I))⇒E(a) = it + 1, if t∈Enabled(M), and
empty otherwise;

guard[tic(M)] = ∀it(it < lft(t)).

The set of these transitions is denoted by Tic.

5. For each marking M and each (t, b)∈BE we define a transition T(t,b),M .
The arcs are described below.

For all p∈P , if a∈AIT |NIT (a) = (p, t), we define ap, apc∈A such that
N(ap) = (p, T(t,b),M ), N(apc) = (T(t,b),M , pc);

E(ap) = EIT (a) < b >, E(apc) = EIT (a) < b >.

For all p∈P , if a∈AIT |NIT (a) = (t, p), we define ap, apc∈A such that
N(ap) = (T(t,b),M , p), N(apc) = (pc, T(t,b),M );

E(ap) = EIT (a)〈b〉, E(apc) = EIT (a)〈b〉.

For all t′∈TIT we define a1,t′ , a2,t′∈A such that



96 V. E. Kozura

N(a1,t′) = (pt
′

, T(t,b),M );

N(a2,t) = (T(t,b),M , pt
′

);

E(a1,t′) = it′ ;

E(a2,t′) =



































−1, if t′∈Enabled(M1),
where M1(p) = M(p)− E(p, t)〈b〉 + E(t, p)〈b〉,

0, if t′ = t and t′∈Enabled(M1),
0, if t′ 6=t and t′∈Enabled(M1) and t′∈Enabled(M ′),

where M ′(p) = M(p)− E(p, t)〈b〉,
i1,t′ , otherwise.

The set of these transitions is denoted by Fire.

The whole CPN so constructed is

NX(ITCPN) = SX , PX , TX , AX , NX , CX , GX , EX , IX),

where

SX = SIT∪C(P t),
PX = P∪P c∪P t,
TX = T ic∪Fire,
CX(p) = CX(pc) = C(p),
CX(pt) = int with − 1..lf t(t),
the sets AX ,NX ,GX ,EX are described in the definition, the initial marking
MX0

= M0∪M
c
0∪PL(I0).

Now let us write some comments to each of these five points.

1. As shown in [1], we have some problems when modelling the clock events
during the time expansion construction. First, if we introduce a tic transi-
tion for each state (M, I) when tic is possible, we can come to a situation
when, instead of this tic transition, the tic transition for (M ′, I ′) fires, where
M ′⊂M . This is the reason for introducing the complementary places.

2. For every transition t we introduce the place pt, where the clock position
for t will be stored.

3. In this point, we define a marking X(M, I) of a time expansion using
complementary and clock places.

4. These transitions model the time-events. The arc expressions in the defi-
nition could be written using the variables whose evaluations could be moved
to the guard functions. Such a definition would be more in the style of a
CPN description in [9, 10]. However, we leave the arc functions as they are
to make the definition more observable. Let us notice that we also could
make the set of tic transitions based on the subsets T ′⊆T ( tic(T’) ) instead



LTL model checking of coloured Petri nets 97

of basing them on the set of markings. In this case, the descriptions of M
will be transferred to the guard functions.

5. These transitions model the occur-events and additionally update clock
vectors. As shown in [1], the clock updating is needed to model firing of
transitions. Since we represent the clock by the unique place for each tran-
sition, we need not the set of transitions to be parameterised by the clock
positions. We do not require our CPN to satisfy DT-property as in [1]. This
means that we have to store in some way the “intermediate” markings. This
is needed when some place p loses its token at the time t and at the same
time some token arrives at p. We elaborate such an “intermediate” marking
in E(a1,t′) and E(a2,t′).

From the definition we conclude that X(ITCPN)’s unfolding exists. Since
the time expansion is finite, n-safe and S-finite, we obtain, by Theorem 2,
finiteness, safety and completeness of the generated unfolding. We can also
consider a part of the unfolding of X(ITCPN) to be an unfolding of initial
ITCPN (see below). The adequacy of this approach is shown by the theorem
below. Let us first give the following definition.

Definition 14. A marking M of X(ITCPN) is called consistent iff

1. |M(pt)| = 1 ∀t∈TIT ,

2. M(p)∪M(pc) = n′C(p),

3. M(pt) = −1⇔t∈Enabled(M∩P ) ∀t∈T .

Let us notice that the initial state is consistent and, by the time expan-
sion definition, any state reached from the consistent state is consistent.

Theorem 4. Let NIT = (N,χ) be an ITCPN and its time expansion NX

be constructed. Then we have the following:

1. A tic-event can occur at (M,I) and (M, I)→tic(M, I ′) ⇔ tic∈T ic is
enabled in M∪M c∪PL(I) and M∪M c∪PL(I)→ticM∪M c∪PL(I ′).

2. (t,b) can occur at (M,I) and (M, I)→(t,b)(M, I ′) ⇔ T∈Fire is enabled
in M∪M c∪PL(I) and M∪M c∪PL(I)→TM ′∪M ′c∪PL(I ′).

3. The (consistent) state (M,I) is reachable in NIT ⇔ the (consistent)
state M∪M c∪PL(I) is reachable in NX . In particular, M is reachable
in NIT ⇔ M = M ′∩P for some reachable marking M’ of NIT .

As mentioned earlier, the time expansion of a CPN is used only to prove the
existence of a finite, safe and complete unfolding of ITCPN. Below we give
the definition of a reduced unfolding which is obtained from the unfolding
of X(ITCPN) by removing the parts with unnecessary information and can
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be constructed directly from the ITCPN. Although the exact algorithm de-
scription is out of the scope of the paper, the basic idea of how to construct
a reduced unfolding directly from ITCPN will be given.

Definition 15. Let N be an ITCPN and the finite unfolding Unf(NX) of
its time expansion be constructed. Then a reduced unfolding is obtained from
Unf(NX) in the next two steps:

1. remove all the places pc and pt from the unfolding and all the incidental
arcs;

2. add the names (t,b) and tic to T(t,b),M and tic(M), respectively.

The reduced unfolding is denoted by R(Unf(NX)).

The configuration C = (t1...tn) of Unf(NX) has a corresponding con-
figuration C ′ = (t1′ ...tn′) of R(Unf(NX)) such that if ti = TM,(t,b), then
ti′ = (t, b), and if ti = tic(M), then ti′ = tic and vice versa.

It also follows from the reduced unfolding definition that

MarkUnf(Nx)(C)∩P = MarkR(Unf(Nx)(C
′).

6.2. Model checking of ITCPN

Semantics of LTL can be defined on interval-timed coloured Petri nets. Let
us remind that we consider only n-safe CPN. As it was made for standard
CPN, the set of atomic propositions for ITCPN is identified with the set
n · TE = TE × TE × ... × TE, where n is the number from the n-safeness
condition and TE is the set of token elements. A proposition m′(p, c) holds
at the state M iff m′(p, c)∈M(p).

The sequence of steps (M0, I0)→
T0(M1, I1)→

T1(M2, I2)..., where each Ti

is either an occur-event given by the binding element [ti, bi〉 or a tic-event,
satisfies φ iff the w-word M0M1M2... belongs to Lφ. We say that the state
(M, I) satisfies φ if any sequence of steps (M, I)→T (M1, I1)→

T1(M2, I2)...
satisfies φ. The ITCPN NIT satisfies φ if the state (M0, I0) satisfies φ. We
write this as NIT |=φ.

The time expansion X(ITCPN) has all the necessary information about
the future behaviour of ITCPN. The following results give us the possibility
of applying the model-checking procedure to interval-timed coloured Petri
nets. Although this is out of the scope of this paper, it is also possible to
apply the same approach to TCPN [9, 10]. The unfolding of TCPN was
described in [14, 15].

Theorem 5. Let NIT be an interval-timed CPN, and φ be an LTL-formula
over NIT . Then NIT |=t φ ⇐⇒ X(NIT ) |= φ.
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Proof. According to the theorem describing a behavior of the time expan-
sion, for each sequence of steps (M0, I0)→

T0(M1, I1)→
T1(M2, I2)... of ITCPN

there exists a corresponding sequence of steps

X(M0, T0)T0XX(M1, T1)T1XX(M2, T2)...

of its time expansion, where T0X is either TM,(t,b) or tic(M).
The formula φ is true on the net NIT iff for each sequence of steps

(M0, I0)→
T0(M1, I1)→

T1(M2, I2)...

of NIT the w-word M0M1M2... belongs to Lφ. From the construction of a
time expansion, it follows that the projections of the state X(M, I) and the
marking M on the set of observable places are equal.

From the fact that for each sequence of steps of ITCPN there exists the
corresponding sequence of steps of X(ITCPN), NIT |=t φ ⇐⇒ X(NIT ) |= φ

follows. ✷

As described above, we consider only a part of the unfolding of time
expansion to be an unfolding of the initial ITCPN. This part of the unfolding
was called a reduced unfolding and was constructed from the unfolding of
the time expansion of ITCPN by removing all the unnecessary information.
The following proposition gives us the possibility of applying the LTL model-
checking procedure to the unfolding of ITCPN.

Proposition 4. Let NIT be an interval-timed CPN, φ be an LTL-formula
over NIT , and γ = M0[t0, b0〉M1[t1, b1〉... be the sequence of steps of X(NIT ).
Then γ |= φ iff R(γ) |= φ.

Proof. The first step of constructing the reduced unfolding from an unfold-
ing of X(ITCPN) consists in deleting the places pt and places pc from the
unfolding of X(ITCPN). By construction of the time expansion, the situa-
tion of having the transition t in the unfolding with pre- or postset consisting
only of the places pt or pc is not possible. While the places pt and pc do not
belong to 〈φ〉, we obtain that after this step γ |= φ ⇐⇒ R(γ) |= φ.

The second step of constructing the reduced unfolding from the unfolding
of X(ITCPN) consists in renaming the transitions and has not any influence
on whether the sequence of steps satisfies φ or not. ✷

7. Conclusion

In this paper, the model-checking technique based on net unfolding proposed
in [22] is applied to coloured Petri nets as they are described in [9, 10]. The
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technique is formally transferred; LTL semantics for CPN and construction
of the product of two CPN are considered. We require a CPN to be finite,
n-safe and to contain only finite sets of colours.

The unfolding is a finite prefix of the maximal branching process. The
size of unfolding is often much smaller than the size of the reachability graph
of a CPN. The use of an unfolding for the model-checking procedure instead
of the whole reachability graph is a step forward in fighting with a famous
state explosion problem.

The papers [14, 15] give us the possibility to construct the unfolding of
interval-timed CPN. In this paper, it is also shown that we can apply the
model-checking procedure to the interval-timed CPN satisfying the above
mentioned requirements of finiteness, n-safeness and finiteness of the con-
sidered colour sets.
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