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Weak convergence of
randomized spectral models of
Gaussian random vector fields

0.A. Kurbanmuradov

Convergence of randomized spectral models of homogeneous vector fields is studied in the
sense of convergence in distribution in a uniform metric of the Banach space of continuous
functions. Under quite moderate restrictions on the parameters of the spectral model,
weak convergence to a Gaussian field is shown if the spectral density p(A) of this field
satisfies the condition [[In(1+ [A[)]'**p(A)dA < oo at some a > 0.

Introduction

It is well-known (see, e.g., [1, 2]) that modeling of the homogeneous Gaus-
sian fields with a continuous spectrum can be performed only approxi-
mately. As for the computational cost, the most economical models are
the randomized spectral ones. Such simplest model was first considered
in [3] for approximating the three-dimensional isotropic non-compressible
field. An algorithm for modeling homogeneous scalar fields with a given
spectrum on the basis of the stratified randomization of the spectral rep-
resentation was introduced in [1]. Modeling of homogeneous, in.the wide
sense, vector fields with a given spectral tenzor was considered in [4-6].
The randomized spectral models of the Gaussian fields are used for solving
a wide range of problems by the method of statistical modeling (see, e.g.,
3, 5, 7-10]).

This study concerns the problem of convergence of randomized spectral
apprroximations of the homogeneous Gaussian vector fields. Note that
this problem has been studied only for the case of scalar fields (see, e.g.,
[2, 11-14)).

In the present study we investigate the conditions of weak convergence
in C(D) (D = [0,1]") of the sequence of the approximations u,, n = 1,2,...,
of a Gaussian field u. These approximations are constructed on the basis
of the randomized spectral models. The main result is as follows: under



20 0.A. Kurbanmuradov

quite weak restrictions on the spectrum (condition (3) which is close to the
necessary one for continuity with probablity one of the realizations of the
Gaussian fields) and general enough conditions on the other parameters of

D .
the spectral model, the weak convergence u, — %, n — 0 IS proved.

1. Convergence of randomized spectral models

Let u(z), z € R, be an m-dimensional homogeneous Gaussian random
field with zero mean and spectral tenzor F(A) = || Fjs(A)| 7=y Hereafter

we assume that F()) is continuous with respect to A € R'. Let p(A) =
Y 7=y Fjj(A) be the trace of tenzor F(A), p1 = [ p(A)dA.
R

The sequence of random fields

un(z) = -‘/‘/p%kz::l {[cos()\k,w)Q'(Ak) — sin( Ak, ©)Q"(Ak)] éx

 Leos(e Q) + s )OI}

n=12,..., :cER!,

will be called randomized spectral model (RSM). Here {Ak}iz, is a sequence
of independent similarly distributed /-dimensional random variables (r.v.)
with the distribution density f(A) = p(A\)/p1; {€k}re1, {Mk}j=, are two
sequences of pairwise independent m-dimensional 1.v. with zero mean and
unit covariational matrices; (-,-) is a scalar product in R Q'(N), Q"()) are
two m X m-matrices continuous with respect to A, satisfying the following:

F(X) = p(MQA)Q™(A). (2)

Here Q(A) = Q'(A)+iQ"(X), @*(}) is a matrix complex adjoint to Q(AN). It
is not difficult to varify that at every n = 1,2,..., the random fields (1) are,
in the wide sense, homogeneous and have the same spectral tenzor equal
to F(\). We will investigate ‘the convergence of these fields to a Gaussian
field u(z) in the Banach space C(D) of continuous m-dimensional vector
functions f : D — R™ with the norm || f lig(py = sup{ll f Il = € D}.

Here D = (0,1}, ||fll = max{|f;|, 5 =1,...,m} is a uniform norm in R™.
The ordinary Euclidean norm generated by the scalar product (-, -} will be
denoted by |- |.
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Theorem 1. Let the spectral density p()) = SpF(A) satisfy the condition

] In'*(1 + [ADP(A)dA < % 3)

at some € > 0. Then with probability one the realizations of the field u(z) are
continuous and the fields u,(z) converge weakly in C(D) to u(z) as n — 0o.

As in the proof of the analogous assertion for the scalar fields [13]
(where p()) is under a more serious restriction: [ |A2p(A)dA < oo0) we
make use of the Jain-Marcus theorem [15].

Let (S,d) be a metric compact, C(8) be the Banach space of continuous
real-valued functions, £ be a random element (r.e.) in C(8), E&(t) = 0,
te 8, {&}2, be a sequence of independent realizations of the r.e. £. The
central limit theorem (CLT) is said to be true for a r.v. £ if the sequence

5alt) = 7 2 &)

=1

converges weakly in C(S) to a Gaussian element w.

Theorem 2 (Jain-Marcus, [15]). For a r.e. § the CLT holds if:

1) sup,es ME(1) < € < oo,

2) there can be found a nonzero random variable G = G(w), MG*(w) <
o0, and metric p on §, continuous with respect to d, such that

(s, w) — E(t, )| < G(W)p(s,1), stES

1

4
/ HY?(S;€)de < o0, ®
0

where H,(S;¢) = In Ny(S5;¢), N,(S;¢) is a minimal number of p-balls, with
the radius less or equal to €, that cover the set S.

We start our proof of Theorem 1 by noting that the Jain-Marcus theo-
rem can be generalized directly for the Banach space Cm(S) of continuous
vector functions f : § — R™. Indeed, let S1,...,5m be “m-copies” of the
set S, S;=8x% {i},i=1,...,m5 § = um,S;. Let us define the metric
d(t, 8) on S by setting
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. d(t,s), ift=(t,14), §=(s,4), i=1,2,...,m,
(t,8) = .
1, otherwise.

Since (S, d) is a compact, (5, d) is also compact. Let us establish the
one-to-one correspondence

f € Cu(S) — feC(9),

between Cp,(S) and C(§), assuming f@) = fi(t),iff = (t,9),i=1,2,...,m.
Apparently, the above correspondence is the isometric isomorphism of the
Banach spaces of m-dimensional continuous vector functions Cy,(5) and
continuous scalar functions C(S). Hence, if £ is a r.e. from Cp,(S5), then
its image £ is a r.e. from C(§). The fulfillment of the CLT for one of these
r.e.s implies its fulfillment for the other one.

Thus, the Jain-Marcus theorem remains true for the Banach space
Cwm(S) if in conditions 1)-2) instead of |¢(t)| we consider the norm || £(2) ||=
max;=1,...m [§;(t)]-

Proof of Theorem 1. The connection between the correlational and spec-
tral tenzors (see, e.g., [16]) implies

E((ulz +7) - u(@))(u(z + ) - u(z))*) = / (eh4r) _ githa)),
Rt :

(e7#Awim) _ e=HAmhy P(A)dA = 2 / (1= cos(A, 1)) F(N)dA.
R

By applying the trace operator Sp to the latter inequality we obtain

i E(uj(z + r) - uj(z))? 2/(1 — cos(A,7))p(A)dA
R

j=1 ( )
5
()
= 4/sm ( 2 )P(A)d’\'
RI
It is known [17] that
) lne(e + |A])
Bl B2 A T 1217
| sin{A, 7} < [A)P|7] [In[r]f °

at [r| < 1, for all § €10,1], 6 €[0,1]. Setting 8=0,6 =14 (0<e < 1),
we obtain
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In'**(e+ |A) _ [1+In(1+ Ehpe

|sin(), )2 <

= Tt < nlFe [r|-1
1 ©)
[1+In*e(1 4 |A])]
- Inlte |r|-1 )
From (5)—(6) we obtain the estimate
S Blus(e 4+ )~ us(2)? € oot (7)
7 J = Inlte [r]1 ’

=1

where

C, = 8/[1 +In*e (1 + AD]p(A)dA < co.

From this estimate and the sufficient condition of Dudley for the continuity
of the Gaussian random fields [18] it follows that the realizations of the field
u(z) are also continuous.

Let us prove the CLT. Denote

£(z) = [cos(A, 2)@'(Y) — sin(A, 2)@Q"(N)IC
+ [eos(A, 2)Q"(A) + sin{A, 2)Q V)],

where A is a random vector with the distribution density p(\)/p, ¢, 7 are
two independent of each other (and of A) random m-dimensional vectors
with zero mean and unit covariational matrix. It can easily be seen that

6(z + 1) = £@)I< | cos(A, z + 7) — cos(A, z)] - [Q(A)C + Q" (M)l

. H " I (8)
+|sin(A, @ + ) — sin(A, @) - | - @A) + Q' (M)al.
From (2) it follows that
Sp{Q Q)T + Q" (MNQ"(W))} =1, (9)
and thus
RISl QNI < Inl,  1Q"(AXI < ISk 1Q" (Ml < Il
Whence by (8) we have
|£(m + r) - E(x)l S (I COS()‘?I + 7') - COS(A? 3)' (10)

+ |sin{\,z + 1) — sin(/\,m)|) (|C| + |n|)

By making use of the obvious equalities
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A
[sin{A,z + r) —sin(A,z)| < 2l sin i——éﬂl,

A
| cos(A,z + 1) — cos(A, z)| < 2|_sin i—-é—r—)|,

and taking into account (6) from (10) we obtain

14 In'*e(1 + |AD]/2
yalt e
In*$* ||

l€(z+7) - §(z)| < 4 (1€ + Inl)-

Then setting

G = 4v2(I¢| + Inl) [1 + In*5(1 + |AD) /2,
.
In|e — ||

and using the Jain-Marcus theorem we have the statement of Theorem 1.
O

p(z,y) =

Remark. The above theorem immediately implies the similar convergence-
assertion for more general models. Let, for instance,

N
F(A) =) FO), (11)
i=1
where F(")()\), i = 1,2,...,N are the spectral tenzors (i.e., non-negative

matrices). For the multiindex @ = (n1,...,nn) consider the fields

. N )
up(z) = Z un, (), (12)
i=1

where every field u,,(z) is constructed independently, similarly to fields (1)
at F(A) = F()(X). The proved theorem implies that u,, LA u®, n; - oo,
i=1,2,...,N. Here ) is a Gaussian element in C(D). Since the fields
un;(z), 1 = 1,..., N, are independent, at min;n; — oo the fields uz(z)
weakly converge in C(D) to the Gaussian field u(z) = ﬁl uC)(z). Let
A UAU...UAN = R' be a partition of the Euclidean space R' into
pairwise non-overlapping domains Ay,...,Ay. Then setting

; F(A), A€A;,
row={

we obtain (11). The field (12) constructed with the above scheme is called
stratified randomized spectral model with the fixed strata A;,...,An.
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