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On unlform convergence of Scharfetter S
scheme -

G.Ya. Kouklina

The transfer of charge carries in a semiconductor device for stationary co:fdition_s is
described by elliptic differential equations with oscilating coefficients. The uniform con-
vergence of one- dlmensmnal Scharfetter’s scheme on the whole interval is shown in this
paper.
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1. Introduction

One-dimensional equation of the type

1 exp (~0(z) o exp (p())p(e) = f(2), 0z < Lo

2(0) = p°, p(1) = pY, £, ¢ € C¥([0,1]) is considered in this paper. It de-
scribes the transfer of charge carries (holes, for example) in a semiconductor
device for stationary conditions. Th1s equation is a part of the fundamental
system of equations describing processes in semiconductor devices 1,2}

4 d?w
2_ —_— _
A g2 =n—DP N(z,)),
_ dp dn _ dy @
J In = ndw+d’ Ip P iz dz’ 2)
dJ, dJ,
dz = BnR(n,p), dz = — B R(n, p),
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R n,p)= ’
| mp) = e )
0<z< 1

0(0)=¢°% @(1)=¢', n(0)=n(l)=nl
(0)— » p(1)=p', N(z,A)=N(z)-A".



66 G.Ya. Kouklina

Here we make use of the following notation:

: 1
A= o No = 0?:2(1 N(z),

l, Bn, Bps Tny Tpy 71, P1 — positive constants; ¢ — electrostatical potential; p,
n — densities of hole and electron concentrations; J,, J, — densities of hole
and electron flows respectively; N(z) — density of admixture concentration
in a semiconductor having large gradients in some inner layer with the cen-
ter at the point zo € (0,1) and width proportional to the small parameter
A of system (2). Following [1], we assume that the function N(z) outside
the inner layer possesses a limited derivative of necessary order, but in the
inner layer it satisfies the inequality

N(Z) < crexp ( - c2|§

), T=2z-—=1z9, |E <ecoA,

where ¢, ¢;, ¢; are positive constants. Let ¢, co, d;, ¢;, ki, &, fi, o, Vi, ki,
¢ 2 0 be the mean different positive constants, independent of A\. Then it
is stated that for the potential the following inequalities are executed:

2 <o vem, = (- U+ S}
(3

z

I%I < Dl,\'iexp ( - Dg,/\

I)’ z =z — 7o, iSEa
i<2,

where ¢ is the width of the inner layer for the potential ¢(z), proportional

to the quantity A|ln A| (later on we take ¢ = 2- A|1n A|).

To get a finite difference approximation for equation (1) we use the
integral identity according to G.I. Marchuk:
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Ty

¢
<(pexpei-psespn = [ ewn(ete) [ o)

Ty—1 .’L‘.._§
.‘E‘+%
=hi/f(t)dtv i=1,N-1,
.'r:‘._%
where {2;}, i =0, N, is a differential net, zo = 0, zy = 1,
(i + Zit1) (hi—1 + hi)
hi = zip1 — 20, 21 = —2'-—-—, h; = 5
fig = mm{h}, h= ma,x{h}
=0,N 1=0,N

and the uniform norm
llglleo = ma-X{Iy.I}

‘-l

are introduced in the space of net functions

9={9tism 9 =9())iow-

Applying to double integrals in numerator quadrature formulas of the
rectangular and calculating integrals in the denominator assuming piece-
wise-linearity of the function ¢(xz), we get finite ifference Scharfetters
scheme [3]:

(Lup)i = 1 [Piv1exp (@i41) —Piexp (i) Pit1 — @i
1

kil exp(piv1) — exp (i) hi
_ piexp (@) — pim1exp (in1) | @i = @i-1] _ f (5)
exp (¢;) — exp (pi-1) hi1 Y
i=1,N—1.

Schemes similar to this one, the so-called schemes of exponential fit-
ting, are suggested in literature [4,5] for elliptic and parabolic differential
equations at a small parameter with higher derivative.

In our case (1) is the equation with oscillating coefficients %;"—;, %‘f:

dzp dp dy d%p
dz? t @ dz dr tp dz? ~ f(2),

where the function ¢(z) satisfies conditions (3).
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We define the error of a difference solution as vector z with components
zi = ((P)i — Pi);=g7» Where p is the solution of differential equation (1),
(P)i = p(2i);_5%> and {pi},_5 is the solution of difference system (5).
P.A. Markowich and others have analyzed discrete Scharfetter’s scheme for
equation (1) in case f(z) = 0. It was shown [1] that for the case h > ¢

llzllo < e(h+ €).

In this paper uniform convergence of Scharfetter’s scheme is shown not
only outside the inner layer, but on the whole interval [0,1] for the case of
sufficiently smooth right side of equation (1).

2. Construction of exact solution

For simplicity we consider, that there is the only inner layer in the interior
of domain [0,1], otherwise we distinquish some domains each possessing the
only inner layer. So, the proofs are similar for the final number of inner
layers. We consider that

dip(z) | d'f(z)
enl dzt b 0<:n<1 Tdzt

0= {_?1_1 ().

<k <2,

Let the introduced net be quasi-uniform, i.e., ﬁh_o < p for h — 0. One-
dimensional differential equation (1) has the following solution:

pe) =1 exp (— 9(a) +¢°) +exp(-(o)) [ " exp (0(1) J(1)dt,

J(t) = ] ' F€)de + o, (6)

Jo = exp (¢!)p* — exp (¢°)p° - [, exp (¢(z)) [ f(t)dtdz
& exp (p(2))ds

In particular, the solution of homogeneous equation (1) appears as follows:

p(z) = p°exp(—¢(z) + ¢°) + Joexp —¢(z) /0 exp (p(2))dt,

Jo = = (2)p — exp (¢%)p"
Jo exp (¢(z))dz
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Algebraic system of three-point equation (5) for f(z) = 0 has the exact
solution of the form:

-1
ex 1 —ex 1
pi = exp(—i+ ) +exp (~pi)JE Y ELHL " FRE
=0 Pi+1 — ¥
= exp pjp1 — expp;
J? = (expplp! — exp POp° i+1 ilp _),
2= NS o=

i=T1,N.

This solution is easy to obtain from equation (5), if we denote a constant
flow with f(z) as J§ and rewrite the discrete equation as correlation:

i-1 -

exp (pi+1) — exp (@; R
piexp (i) = pexp (¢°) + Y p(f’;tl) - (P,p(%)hj» i=T,N.
2 J

3=0

For ¢ = N from this equality we find value Jj. Similarly, we determine

the exact solution for f(z) # 0, replacing equation (5) by the recurrent
expression:

JP = JP, = ki,

JP = exP (pi+1)Pi+1 Pi+1 — ¥ _ €eXp (Pig1)Pis1
P +1) — ) ko I; ’
exp (pi+1) — exp (¢;) i ;
I,‘ - exp(()oi'-l-l)—exp((loi)hi’ i:O,N—- 1.
Wi+1 — @i

Denoting the quantity of flow J3 on the left at the point zo = 0 we obtain

i—=1 i—=1 k
exp (pi)pi = exp (O")P° + 5 D Tk + Y _ Ik Y _hifj,
k=0 k=0 ;=0
. exp(p)p! — exp (O)p° — Tig Tk b Bif
Jo = N-1 _ )
Ek:o Ik

i=T,N=1.

In more detail we can write down the solution of difference scheme (5) as
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follows:
7 , i-1 k
pi = exp(—pi + )P’ +exp(—9)) Y I Y _hjf
k=0 j=0
exp (') — exp (¢)p° — Tico Ik Tho hifi 2
+ exp (—¢i) ‘ N1 >RTF
k=l Ik k=0

3. Obtaining uniform evaluation for difference
~ solution error

Using the form of the exact solutions of differential equation (1) and dif-
ference system (5) we will show that Sharfetter’s scheme is uniformly con-
vergent with an accuracy lower than unity:

lzlleo < ch|InAl. (8)

Let
A= {6i}£=5JV_-T’ 8 = [zi, zisa), I= {i}izo,N—l'

In future we will need to represent spaces A and I as sums of some sub-
spaces with definite properties

In={iel;6;€ Aa}, ADa={6C U},
Io.:’{i €l;é € Ac}, Do = {6,' C'Qg = [zo — ho,zo + ﬁ.ol},
Ip={ieI;6; € Ap}, AOp={6CQ=[0,1]\ {21 UQ}}.

It is obvious that I = I4 + I + Ig, where Ig is empty space in the case

h > € (this case was discussed in [1]). Taking into account condition (3),
we can write the inequality:

dk
d(’:(:) <ck, k<2, zeb, b€y
d*
di(km) < DixFexp (— Diho), k<2, z€8, &€lc;

™
=
A

< 7h,
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where v equals two or three depending on location of the interior layer
center for the point x¢ with respect to nodes of the net. For proving
inequality (8), we need some auxiliary statemenis.

Statement 1. Let

K Dy
Oi=Ssew(~5) fel O=mgiol

Then

> 0: < fih|Inhl,
i€lg

where i is a positive constant.
Proor. To prove this we use the following consideration. The amount of

elements in the set Ap, hence and in /g, does not exceed value ¢/hg, what
gives ' P :

> e, < oA
i€lp 0
AlnA| _ A3 oy AllnAj
0=5= < e (- Day) - =5
352/ In A _ ﬁq
< Wwho exp( DzA)-

We consider two cases:

1. hg/A < 1. This assumption gives a chain of inequalities:

1 1 -1 1
< =< = - <
syssy 3y
RE 1 ko 1 .
—i-lnxexp ( - DQT) < —D—;h(,}lnhgl.

2. ho/A > 1. We transform the expression:

%gln%eXP(‘ngﬂ‘ = ii;Q(h‘t"}i;\g'+ln hlo) eXP(—Dz-hTO)

fioho|Info|, f1 > 0.

IA
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Both inequalities can be united together:

) ©; < jih|Inhl. o

iclp

Statement 2. We introduce auziliary functions:
; 1 [%isd
=g [ iw-
1 xi-—&

. Ti41 z‘.+§
5 = o(€)) f(t)dtdE,
v / exp(c,()/e (t)dtde

. [Tt ) ex i —ex i
T; Pipl — Pi

i=1,N - 1.

For them the following estimates take place:

Ixillo £ Rih,
Ix2llo < Rah?,
R3h3, i€ IA,
3 h
[[x3llco < R“ﬁ exp ( - Dzyo), i€ lpg,
Rsh, 1€ Ip.

ProOF. Let us get the first inequality using the quadrature rectangular

formula in the expression for x;. We evaluate the expression for x2 directly
from its form:

: k
x4 < expCo-h?- 7" < Ryh%.

We evaluate the value of fuction x3. Write ¢(z) in the form of Lagrange’s
polinomial with the second order residual term for z € é;:

o(z) = i + (x — x‘)(’_’_'_tlﬁ:ﬁ +(z - zi)(z - a:,-.,.l)ﬁwléfo)’

Fin f 41 . —_
[. exp (p(z)) = exp (‘Pi)j (z - mi)——wi-}’l' LZp
[Ti+

v (e te(e) -~ exp (e - ) P e,

o h;
&o € 4,
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q

We can rewrite the latter addendum by theorem on the average as follows:

Tig1 e — ns
/' (exp e(z) ~exp (z - m)fﬂ'lh—%)d:c

X h; (exw(E) —exp (£ —z; )ﬁhl——&)

(exp @) - (€ - z) =25,

1

)sm+1—¢>s
h;

I R e e R (R e ]

Let

= h;exp(§ —«;

o= (- )€ - x,+1)"°"(5°)

For &g, £ € §; there exists such ag < 0, independent of the value A, h, that
la| < ao.
Making use of the irequality:
exple| <1+ |al - expao,
where 0 < a < ag, we get the final estimation:

I < hiexp (e - 2) ZE=E - (expla] - 1)
1

IA

||99”(EO)|
2

hiexpco — Coexpa - |€ — 2;] - [€ — zi41
Rehilpn(&o)l,  €o.€ € 6.

If i € I, then from limitedness of @/(&p) follows:

IA

X3 < Rah®.

For i € Ip we use an estimation for the second derivative for the potential
on the multitude Ag:
: h3 ho
IX5| < Rz exp ( - D2T).

From definition of the function x3 for i € Ip we get

; exp (cp— ¢p) ~ 1
< . < Rsh. O
[x5] < hexpeg (1+ (0 — &) ) < Rs
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Let us prove the basic inequality (8) in two steps. At first we will show
that it is true for the case of constant flows, i.e., for f(z) = 0.

Statement 3. If z is a vector of difference scheme error (5) in the case
f(z) =0, then : »
l|zlleo < ch|lnh|.

PRrooF. We will write out the value of the error vector component:

|2i] = |(p)i — il = exp (—i) - | exp (¢')p — exp (¥°)p°|

J5texp (pt)dr _ Ticohy=2at=sele)
Jo exp (p(z))dx TNt p e les)-oxp (o) P

Pi41—¥s

i=T,N—1.

Denote

e o . Ti41
I; = hiexp (is1) - exp (<p;), Il = / exp (¢(z))dz,
Pi+1 — @i xz;
e

a=y 1= " exp (¢(2))iz,

i=0

1—1
Bi=Y_I;

3=0
A= AN, B =By.

and note that

A2m, B273, Ai<7, Bi<v, i=1,N,
exp(co~ &) —1
¢ — Co '

T1=expéy, Yz=expc, 7Y3=1, Ys=expco

We rewrite the expression for 2; in the form

' A;  B;
|:| = exp (—wi)| exp (¢")p" = exp (¢")p°] - |52 = =
A B

(B - A)A; + A(A; - B.‘)

AB ?

= exp (—¢;)| exp (‘Pl)Plb = B (‘éo)pOI ' '

t=1,N.
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We estimate the value (4; - B;), i =T, N using Statements 1 and 2:

[Ai=Bil < 3 1T - LI+ 3 U - 1)1+ 3 |17 - I
€], ielp i€lp

< R3h® + Rsh + Rsh|lnh), i=T,W.

We obtain that

|A; - B;| < Rgh|lnh|, i= 1, N.

Now we can estimate the error vector component:

|zi| < exp(—co)-2-exp comax(p®, p' )17 95" - 29, Reh| In h|
< Rsh|lnh|, i=T.N. © o

A change-over to the case f(z)# 0 is the following step of the proof of
Statement 8:

z = (p)i - | t
= exp (~¢i + ¢°)p° + exp (—¢;) fo 'expsa(t) /0 f(§)dedt

i
+exp (—¢i) - Jo - / exp (t)dt — exp (=; + ¢°)
0

-1
~ exp (-¢i) ZI Z hefi — exp (~pi)Jg Y I (9)
7=0 k=0 j=0

Il

J exp w(t)dt) o Ij]

Joexpo(z)dz | TN

exp (—;) [(EXP ¢'p' - exp o°p°) (
j=0

[ T t 1= J
+exp (—¢;) /0 exp (1) /0 f({)dfdt—EIthkka

i=0 k=0

N_-II ' h'f- i—1
- 0):%.% R
_ fo 2xp (z) [y f(t)dtdz [
Jo exp ¢(z)dz ./ xp ()t

:
+ exp (=i)

i=1,N.

The first addendum of this sum was estimated in Statement 3.
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To evaluate the two latter addendums in the square brackets we trans-
form double integrals presented in (9): -

[ ewtow) [ repaca

=1 [ poags <
= exp (¢(z)) f(t)dtdz
kz=:0 [ 'L* ‘/”k+ 1

k

k41 k
- Zx’;+z (/ exp(w(z))dwzﬁjfj)

k=0 k=0

i-1 Tk41 L 4
+Y ( /x exp ((z))dz - _infi)
1 k+1 X 3
BB ([ e o)

k
ks Tith
+/z eXP(w(w))dI-jgo/tj_% f(t)dt}

k=0 7=0
-1 k i— k
+ ngzhjfj T ZIkZh fis
: k=0 7=0 k= j=
i=1,N.

Now it is easy to obtain

Statement 4. For

7=0 k=0

£ /: exp(p(x) / f(t)dtda:‘—zl th fe, i=1,N,

the following estimate is correct:
'\ |F|<Rohlnh|, i=TN.
ProoF. We represent F; as the sum

R=E1+E'2+Fi3’
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where
i-1
F! =),
k=0
. Rl Y ‘ - LA
F? = Z/ exptp(z)dm‘-Zx’lhj,
k=0"Y %k =0
F = Exszhf,, [i=TF.
k=0 7=0
From Statements 1 and 2 it is expected that
|F}| < Rah.
We estimate F? and FP:
- N-1 Trgr
IF2 < | ) Xl - Z/ exp p(z)dz| < Rihexp co < Rioh,
k=0 k=0 Y%k B |
-1
THES Zxé” > ki
k=0 j=0
to b+ Y+ X )
i€l i€l ielp

< ko(Rsh® + Rsh + Ryjh|Inh|) < Rygh|lnh|, i=T1N.
Uniting three latter inequalities we obtain
|Fi] < Roh|1n hl. - o

At present we start to estimate two la,tter addendums of (9) For this
we mtmduce the notation: :

i—1 .
Ci= E:Ikii:ﬁ.ﬂ,' C= cbva”
k=0 j=0 e

D; = /0 " exp o(2) /0 " f(t)dtdz, D = Dy.
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Expression (9) may be rewritten as:
’ A; B;
z = exp(-¢i) [(exp 'p' —exp so°p°)(—j - g)]

c D
+ exp (- i) [EB" - ZA;] + exp (—¢i)[Di - Cil,
i=1,N.

It is easy to show that the values {C;, D;},_, are bounded by some
positive constants:

ICil <75, |Dil <78 i= 1,N.

The second addendum in square brackets is estimated by the following:

1C. D A-B CB; — DA;
B Z4 =2 ¢Bt—
< 757477 Y3 ' Rsh|In k| + 77 (Rs + Ro)h|Inhj
S R13hl1nh|.

Bearing in mind that F; = D; — C;, we have the estimate |D; — C;| <
Roh|Inh|, i = 1, N. From the latter considerations the inequality follows:

llzlleo < ch|Inhl,

where ¢ is a positive constant independent of A and e.
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