
Bull. Nov. Comp.Center, Num. Anal., 17 (2015), 17–33
c© 2015 NCC Publisher

The numerical simulation of interacting galaxies
by means of hybrid supercomputers∗

I. Kulikov, I. Chernykh, E. Katysheva, V. Protasov, A. Serenko

Abstract. In this paper, a new hydrodynamic numerical simulation of interacting
galaxies is proposed. The main subgrid physics processes are: the star forma-
tion, the supernovae feedback, the cooling function and the molecular hydrogen
formation. The collisionless hydrodynamic approach was used for the simulation
of the stars and dark matter. An approach for constructing a high order accurate
numerical method for solving hydrodynamic equations is described. This method
is based on a combination of the operator-splitting method, the Godunov method,
and the piecewise-parabolic method on a local stencil. In addition, the performance
of the numerical method is demonstrated on a global test of the central galaxies
interaction.

1. Introduction

The movement of galaxies in dense clusters turns the collisions of galaxies to
an important evolutionary factor, because during the Hubble time an ordi-
nary galaxy may suffer up to ten collisions with the galaxies of its cluster [1].
In interacting galaxies, the subgrid physics problem: the star formation [2],
the AGN, and the supernovae feedback [3], the formation of supermassive
black holes [4, 5], chemistry [6], plays the key role. One of the most impor-
tant fundamental processes, affecting the molecular clouds formation as well
as the formation of the Universe, is the process of the molecular hydrogen
evolution [7, 8].

One of the main problems of the galaxy simulation is the scale ra-
tio. A typical galaxy can have the mass of 1013 Solar masses and the
size of 104 parsecs, resulting in 13 order gap for the mass and 14 or-
der gap for the size in comparison with the Sun. Therefore, in order to
simulate complex astrophysical processes with a high resolution it is nec-
essary to use the best available supercomputers. Two of the top three
(five of the top ten) supercomputers listed in the 2014 November version
of the Top 500 list fit graphic accelerators and Intel Xeon Phi accelera-
tors. Most likely, the first ExaScale performance supercomputer will be
built based on the hybrid approach. The code development for the hy-
brid supercomputers is not a solely technical problem, but an individual
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complex scientific problem, requiring co-design of algorithms at all stages
of the solving problem: from the physical statement to the development
tools.

During the last two decades, two main approaches were used for the
numeral hydrodynamics simulations of astrophysical flows: the Lagrangian
smooth particle hydrodynamics methods (hereafter, the SPH method) and
Eulerian mesh-based methods. Numerous comparisons between the SPH
and the mesh-based methods have been performed [9, 10]. The main dis-
advantages of most of the SPH methods are the inaccurate computation
of large gradients and discontinuities [11], suppression of physical instabil-
ities [9], the difficulties with choosing a proper smoothing kernel [12] and
the use of artificial viscosity [13]. The main disadvantages of most of the
mesh-based methods are their Galilean non-invariance on a mesh [10, 14],
the difficulties with coding and implementation, and difficulties with treat-
ing multi-component systems, such as stars and gas [15, 16]. During the
last decade, the combined Eulerian–Lagrangian approach was developed
and actively used for numerical simulations of astrophysical hydrodynamics
flows [17,18]. These methods unite the advantages of both approaches, while
attempting to reduce the disadvantages.

There are several well-known high-order numerical hydrodynamics meth-
ods such as the MUSCL (Monotonic Upstream-Centered Scheme for Con-
servation Laws) method [19, 20], the total variation diminishing (TVD)
method [21], and the piecewise parabolic method (PPM) [22]. The general
idea of their approaches is in constructing a piecewise-polynomial function
on each cell of the numerical mesh. It may be a piecewise-linear reconstruc-
tion (in the case of the MUSCL scheme) or a piecewise-parabolic recon-
struction (in the case of the PPM method). For constructing a monotonized
numerical solution (needing to avoid the growth of spurious extrema), the
limiters are usually employed in the TVD methods [23]. The problem of se-
lecting limiters is analogous to the choice of artificial viscosity in SPH meth-
ods: a wrong choice of artificial viscosity for the SPH method (or limiters
for the TVD method) can cause a considerable distortion of the numerical
solution. The PPM method does not have the monotonicity problem, be-
cause piecewise-polynomial solutions on each cell are constructed without
extrema. The main disadvantage of the PPM method is the use of a non-
local stencil for computing the hydrodynamic quantities at the next time
step. The non-local stencil has problems with a proper choice of boundary
conditions, domain decomposition, and dissipation of the numerical solution.
To resolve these problems, a modification of the PPM method was proposed:
the so-called piecewise-parabolic method on a local stencil (PPML) [24,25].
The main idea of the PPML method is the use of a piecewise parabolic
numerical solution on the previous time step for computing the Riemann
problem.
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2. The numerical model of interacting galaxies

The numerical model of interacting galaxies is based on the solution of
one-velocity gravitational gas dynamics equations describing the mixture
of atomic and molecular hydrogen, the equation describing variations of
molecular hydrogen density, and the ”collisionless” hydrodynamic approach
for the description of the stars and dark matter [16]. The numerical model
by means subgrid physics processes: star formation, supernovae feedback,
cooling function and molecular hydrogen formation, has been extended.

2.1. The gravitation hydrodynamic equations. We use the 3D model
of self-gravitating gas dynamics in the Cartesian coordinate system, includ-
ing an extended set of equations for the gas dynamics in a divergence form,
closed by an equation of state for an ideal gas. A set of equations is supple-
mented by the Poisson equation for the potential of a gaseous component:

∂ρ

∂t
+∇ · (ρ~u) = S − D,

∂ρH
∂t

+∇ · (ρH~u) = −sH,H2 + S ρH
ρ
−DH ρH

ρ
,

∂ρH2

∂t
+∇ · (ρH2~u) = sH,H2 + S ρH2

ρ
−DρH2

ρ
,

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇p− ρ∇(Φ) + ~vS − ~uD,

∂ρE

∂t
+∇ · (ρE~u) = −∇ · (p~v)− (ρ∇(Φ), ~u)− Λ + Γ− εD

ρ
,

∂ρε

∂t
+∇ · (ρε~u) = −(γ − 1)ρε∇ · ~u− Λ + Γ− εD

ρ
,

ρE =
1

2
ρ~u 2 + ρε, p = (γ − 1)ρε.

The set of equations is supplemented by the Poisson equation for the poten-
tial of the stars and dark matter component:

∂n

∂t
+∇ · (n~v) = D − S,

∂n~v

∂t
+∇ · (n~v~v) = −∇Π− n∇(Φ) + ~uD − ~vS,

∂ρW

∂t
+∇ · (ρW~v) = −∇ · (Π~v)− (n∇(Φ), ~v)− Γ + ε

D
ρ
,

∂Πξξ

∂t
+∇ · (Πξξ~v) = −2Π∇ · ~u− Γ + ε

D
3ρ
,

ρW =
1

2
ρ~v 2 +

Πxx + Πyy + Πzz

2
,
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The equation for gravity is

∆Φ = 4πG(ρ+ n),

where p is the gas pressure, ρH is the atomic hydrogen density, ρH2 is a
molecular hydrogen density, sH,H2 is the formation rate of molecular hydro-
gen, ρ = ρH + ρH2 is the total density, n is the density of the stars and dark
matter, ~u is the gas velocity vector, ~v is the stars velocity vector, ρE is the
total energy density of gas, ρW is the total energy density of the stars and
dark matter, Φ is the gravitational potential, ε is the internal energy of gas,
γ is the ratio of specific heats, Πξξ = (Πxx,Πyy,Πzz), S is the supernova
ratio feedback, D is the star formation ratio, Λ is the cooling function, Γ is
the supernova explosion energy.

2.2. The subgrid physics model. The subgrid physics model plays the
key role in the interacting galaxy problem. In our model, we use the following
processes:

1. The self-consistent chemokinetic model;

2. The star formation process;

3. The supernovae feedback mechanism; and

4. The Compton cooling function.

Chemical kinetics of the process under study is based on the condition
that molecular hydrogen is formed on the surface of dust grains and disso-
ciated by the ultraviolet Lyman–Werner photons and cosmic rays. Also, we
assume the mixture of dust and gas to be uniform, which is a quite natu-
ral condition. Thus, the molecular hydrogen kinetics follows the differential
equation [26]:

dnH2

dt
= Rgr(T )nH(nH + 2nH2)− (ξH + ξdiss(NH2 , AV ))nH2 ,

where nH2 and nH are the number densities of molecular and atomic hydro-
gen, respectively, NH2 is the molecular hydrogen column density,

Rgr(T ) = 2.2 · 10−18S
√
T s−1

is the molecular hydrogen formation rate on dust grains [27], S = 0.3 is the
efficiency of the molecular hydrogen formation on dust [28],

ξH = 6 · 10−18 s−1

is the cosmic ray ionization rate [29,30], Av is extinction [31]. The photodis-
sociation rate ξdiss(NH2 , AV ) can be written down as [32]:
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ξdiss(NH2 , AV ) = ξdiss(0)fshield(N(H2))fdust(AV ),

where
ξdiss(0) = 3.3 · 1.7 · 10−11 s−1

is the unshielded photodissociation rate [33],

fdust(AV ) = exp(−τd,1000(AV ))

is the dust absorption factor [32],

τd,1000(AV ) = 3.74AV = 10−21(N(H) +N(H2))

is the optical depth due to dust grains at a wavelength λ = 1000 Å, N(H)
and N(H2) are the column densities, the function for the self-shielding factor
being approximated by [32]:

fshield(N(H2)) =
0.965

(1 + x/b5)2
+

0.035√
1 + x

exp(−8.5 · 10−4
√

1 + x),

where

x =
N(H2)

5 · 1010
m2

b5 = b/107 m/s, and b is the Doppler broadening parameter. To carry out
the precise calculations for the functions fshield(N(H2)) and fdust(AV ), we
should know the columns densities N(H) and N(H2), for which we need
to find the ultraviolet radiation cumulative field formed by the young stars.
After that, we estimate the number density of molecular hydrogen nH2 and
determine the effective ratio of the specific heats [8]:

γ =
5.5− 1.5nH2

3.3− 0.5nH2

The star formation ratio. The necessary conditions of the star for-
mation process are [34]:

T < 104K, ∇ · ~u < 0, ρ > 1.64
M�
pc−3

.

We can write the star formation ratio in following form:

D =
dn

dt
= C ρ

τdyn
= Cρ3/2

√
32G

3π

where C = 0.034 is the factor of efficiency of the star formation.

The supernovae feedback mechanism. The supernovae feedback
ratio can be written down in the following form [35]:
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S = ∆SN =
dρ

dt
= βC n

τdyn
= βCn3/2

√
32G

3π
,

where β = 0.1 is the ratio of the young stars explosion. The injection energy
for the explosion star of the mass of M� is equal to 1051 erg, thus the heating
function of the supernovae feedback can be written in the following form:

Γ = 1051
MSN

M�
erg,

where MSN is the total mass of the explosion stars in a certain volume.

The Compton cooling. The galactic gas, that was heated in the pro-
cess of collision up to the temperature ∼ 104–108 K, cools in the course of
time. The plasma cooling rate estimated with the temperature exceeding
∼ 104, is [36]:

εc ' 10−22n2 cm−3erg,

where n is the plasma density given as the number of hydrogen atoms per
cubic centimeter.

3. The numerical method

An original numerical method, based on a combination of the Godunov
method, the operator splitting approach and the piecewise-parabolic method
on a local stencil providing a high-order accuracy, was used to numerically
solve the hydrodynamics equations. A set of equations is solved in the
two stages: the Eulerian, where the equations without advections terms are
solved without considering the subgrid physics, and the Lagrangian, where
the advective transportation takes place.

3.1. The Riemann solver at the Eulerian stage. At the Eulerian step,
the 1D hydrodynamics equations (along the coordinate x) can be reduced
to the following non-conservation matrix form:

∂

∂t

(
v
p

)
+

(
0 ρ−1

γp 0

)
∂

∂x

(
v
p

)
= 0.

We can solve the Riemann problem for this system using a Godunov-type
method as described below. Let us rewrite this system in the following form:

∂u

∂t
+B

∂u

∂x
= 0,

where

u =

(
v
p

)
, B =

(
0 ρ−1

γp 0

)
.
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This system is hyperbolic, and hence the matrix B can be represented as
B = RΛL, where R and L are the right-hand side and the left-hand side
eigenvector matrices, respectively, and Λ is a diagonal matrix of the eigen-
values of the matrix B:

R =


1√

1 + γpρ

1√
1 + γpρ

ρ
√
γp/ρ√

1 + γpρ
−
ρ
√
γp/ρ√

1 + γpρ

 , Λ =

(√
γp/ρ 0

0 −
√
γp/ρ

)
,

L =


ρ(ρ−1 + γp)

2
√

1 + γpρ

(ρ−1 + γp)

2
√

1 + γpρ
√
γp/ρ

ρ(ρ−1 + γp)

2
√

1 + γpρ
− (ρ−1 + γp)

2
√

1 + γpρ
√
γp/ρ

 ,

Let us multiply the system with the matrix L:

L
∂u

∂t
+ LRΛL

∂u

∂x
= 0.

Using the identity LR = RL = I, where I is the unit matrix, and making
the substitution w = Lu, the latter system can be written down as

∂w

∂t
+ Λ

∂w

∂x
= 0,

where Λ is a diagonal sign-definite matrix with eigenvalues

λ1 =
√
γp/ρ, λ2 = −

√
γp/ρ.

To formulate the Riemann problem, we must define the values of w on
the left and on the right cell interfaces. In the case of piecewise-constant
functions, the initial conditions for the Riemann problem can be written as:

w(x, 0) = w0(x) =

{
wL, x < 0

wR, x > 0
=

{
LuL, x < 0,

LuR, x > 0,

where uL and uR are the l.h.s. and r.h.s. of the cell interface and wL = LuL

and wR = LuR. The latter has the analytical solution

wj(x, t) = w0
j (x− λjt).

We make the inverse substitution, and the solution to the Riemann problem
for u will be written as u(x, t) = Rw(x, t).

Now, we proceed with defining the space-averaging f the matrix B at the
cell interfaces. To do this, we will use a modification of the Roe approach
[37], and the average density and pressure on the cell interfaces can be
written as
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ρ =
ρ
3/2
L + ρ

3/2
R√

ρL +
√
ρR
, p =

pL
√
ρL + pR

√
ρR√

ρL +
√
ρR

.

These values are used for computing the matrix B. The reason for this
modification of the Roe approach is that it allows an accurate calculation
of the boundary between gas and vacuum.

Finally, the solution of the normal velocity and pressure at the cell in-
terfaces for the gas dynamic equation with the effective specific heats ratio
can be written in the following form:

U =
uL(−λt) + uR(λt)

2
+

pL(−λt)− pR(λt)

2

√
(
√
ρL +

√
ρR)2

γL+γR
2 (ρ

3/2
L + ρ

3/2
R )(pL

√
ρL + pR

√
ρR)

P =
pL(−λt) + pR(λt)

2
+

uL(−λt)− uR(λt)

2

√√√√ γL+γR
2 (ρ

3/2
L + ρ

3/2
R )(pL

√
ρL + pR

√
ρR)

(
√
ρL +

√
ρR)2

,

the solution to the ”collisionless” hydrodynamic equation takes the following
form:

V =
vL(−µt) + vR(µt)

2
+

ΠL(−µt)−ΠR(µt)

2

√
(
√
nL +

√
nR)2

3(n
3/2
L + n

3/2
R )(ΠL

√
nL + ΠR

√
nR)

Π =
ΠL(−µt) + ΠR(µt)

2
+

vL(−µt)− vR(µt)

2

√
3(n

3/2
L + n

3/2
R )(ΠL

√
nL + ΠR

√
nR)

(
√
nL +

√
nR)2

,

where

λ =

√√√√ γL+γR
2 (pL

√
ρL + pR

√
ρR)

ρ
3/2
L + ρ

3/2
R

, µ =

√
3(ΠL

√
nL + ΠR

√
nR)

n
3/2
L + n

3/2
R

,

qL(−νt) = qRi −
νt

2h

(
Λqi − q6i

(
1− 2νt

3h

))
,

qR(νt) = qLi +
νt

2h

(
Λqi + q6i

(
1− 2νt

3h

))
.

Building a parabola and defining the parameters qRi , qLi , Λqi, q
6
i are discussed

in the next subsection.
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3.2. The construction of a piecewise-parabolic function. We will
construct a piecewise-parabolic function q(x) at segments [xi−1/2, xi+1/2] of
a regular mesh with a step h. The general form of a local parabola [22] is

q(x) = qLi + ξ(Λqi + q
(6)
i (1− ξ)),

where qi is a value at the center of a cell satisfying the equation

qi =
1

h

xi+1/2∫
xi−1/2

q(x) dx,

ξ = (x − xi−1/2)h
−1, Λqi = qLi − qRi , and q

(6)
i = 6(qi − (qLi + qRi )/2). For

constructing the values qRi = qLi+1 = qi+1/2, the interpolation function of
fourth order was used:

qi+1/2 =
qi + qi+1

2
− δqi+1 − δqi

6
.

where δqi = (qi+1 − qi−1)/2.
Below we present an algorithm for constructing the local parabola. The

input for this algorithm are values qi at the center of cells. The output of
the algorithm are local parabolas at segments [xi−1/2, xi+1/2].

Step 1. We construct δqi = (qi+1 − qi−1)/2. For this procedure we use
values qi+1 and qi−1 on the neighboring cells. Due to the lack of extrema on
the parabola, we must modify the formula for δqi:

δ̃qi =


min(|δqi|, 2|qi+1 − qi|, 2|qi − qi−1|) sgn(δqi),

(qi+1 − qi)(qi − qi−1) > 0,

0, (qi+1 − qi)(qi − qi−1) ≤ 0.

In the case a parallel implementation of this procedure by means of the MPI
library, we must exchange an outside layer. After that, we can compute
values on the boundary:

qRi = qLi+1 = qi+1/2 =
qi + qi+1

2
− δ̃qi+1 − δ̃qi

6
.

Step 2. We can construct a parabola at a local segment by the formulas:

Λqi = qLi − qRi , q
(6)
i = 6(qi − (qLi + qRi )/2).

In the case of non-monotonicity of a local parabola, we must correct bound-
ary values qLi and qRi by the formulas



26 I. Kulikov, I. Chernykh, E. Katysheva, et al.

qLi = qRi = qi if (qLi − qi)(qi − qRi ) ≤ 0,

qLi = 3qi − 2qRi if Λqiq
(6)
i > (Λqi)

2,

qRi = 3qi − 2qLi if Λqiq
(6)
i < −(Λqi)

2.

These parabolas may have a discontinuity on the boundary of a cell.
In this case, we solve the Riemann problem. In the classical piecewise-
parabolic method, parabolas are continuious and this is an important feature
of the PPML approach.

For constructing the Riemann solver, we must use the integral by means
of the Riemann characteristic ±λt on the left and on the right from the cell
interface, and these values can be written in the following form:

qL(−λt) =
1

λt

xi+1/2∫
xi+1/2−λt

q(x) dx = qRi −
λt

2h

(
Λqi − q(6)i

(
1− 2λt

3h

))
,

qR(λt) =
1

λt

xi+1/2+λt∫
xi+1/2

q(x) dx = qLi +
λt

2h

(
Λqi + q

(6)
i

(
1− 2λt

3h

))
.

3.3. The Riemann solver at the Lagrangian stage. This system can
be presented in the following general form:

∂f

∂t
+∇ · (f~v) = 0,

where f can be the density ρ, the momentum density ρ~v, the total energy
density E, or the internal energy density ε. The Lagrangian step describes
the advective transport of all hydrodynamics variables. To solve the system
of equations, we use a Godunov-type method. For the calculation of the
fluxes F = f~v at the cell interfaces we use a 1D linearized analogue of the
system

∂f

∂t
+ vx

∂f

∂x
= 0.

This system has a trivial eigenvalue decomposition: the eigenvalue is equal to
vx and the module of the eigenvalue is λ = |vx|. In this case, the eigenvalue
is not a sign-definite variable, and therefore the solution can be written in
the following form:

F =

{
vxfL(−λt), vx ≥ 0,

vxfR(λt), vx < 0,

where fL(−λt) and fR(λt) are piecewise-parabolic funcins and the velocity
at the cell interfaces can be written in the form
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vx =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

.

The numerical scheme for a 1D system can be written as

fn+1
i − fn+1/2

i

τ
= −

Fi+1/2 − Fi−1/2

h
.

The ”Big” values with a half-integer index are a flux on a corresponding
cell, and the values with an integer index are hydrodynamic variables. For
computing f -flux, the PPML approach is used.

3.4. The dual energy formalism. After solving the gravitational gas
dynamics equations, the original procedure is performed for the adjustment
in order to save the total energy of the system. The re-normalization is of the
velocity vector length, its direction remaining the same (on the gas-vacuum
boundary) by means of the formula

|~v| =
√

2(E − ε) if
E − ~v 2/2

E
≥ 10−3.

The entropy (or the internal energy) correction [38] is done by the formula

|ρε| =
(
ρE − ρ~v2

2

)
if
E − ~v 2/2

E
< 10−3.

Such a modification of the method keeps the detailed energy balance and
ensures a non-decrease of the entropy.

3.5. The Poisson solver. After the gas values are computed the Poisson
equation is solved for obtaining the gravitational potential. The Poisson
equation is solved by the Fourier transform method. The 27-point stencil is
used for the approximation of the Poisson equation:

fikl =
∑
j,m,n

fjmn exp

(
i
(πij
I

+
πkm

K
+
πln

L

))
.

It results in the following scheme for the Poisson equation in the Fourier
space:

Φjmn =
2
3πh

2ρjmn

1−
(

1− 2 sin2(πj
I
)

3

)(
1− 2 sin2(πm

K
)

3

)(
1− 2 sin2(πn

L
)

3

) .
Thus, the scheme consists of the following steps:
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1. Transformation of the values into the harmonic space;

2. Evaluation of the potential harmonics from the density harmonics; and

3. Inverse transformation of the potential values.

The boundary conditions for the Poisson equation fully define the solution
of the gravitational dynamics problem. Due to this reason, the computation
of these boundary conditions is of great importance. It is known that the
potential of an object could be considered to be zero if a distance from the
object is infinite. The fact is that the boundary conditions must be set at
a finite distance from the gas object. In the present work, the following
technique for the boundary conditions is proposed: let us assume that the
mass of a gas body is concentrated at the center of the computational do-
main, and the value of the potential is inversely proportional to the distance
from the boundary with respect to the center of the domain. However, this
treatment of the boundary conditions does not take changes of the gas cloud
structure into account. This means that these boundary conditions will give
a wrong distribution of the gravitational potential when either the size of
the domain is too small or the gas is spreading in the whole domain. This
incorrect representation of the potential can easily result in a perversion of
the physical situation as a whole. This problem is solved with the boundary
conditions evaluated via the inertia moments, using the static, axial and
centrifugal inertia moments.

3.6. Parallel implementation. The numerical method was implemented
as a prototype of the software system AstroPhi 2.0 in order to use the hy-
brid supercomputers fit into Intel Xeon Phi accelerators. This code appears
to be a natural extension of the AstroPhi code [39]. For the computa-
tional experiments, an experimental node of an ultradense solution RSC
PetaStream was used. The usage of only Intel Xeon Phi accelerators as
computation modules makes its distinctive feature. Apparently, such an ar-
chitecture appears to be the most promising as the basis for the first exaflop
supercomputer. With regard to the software system construction the code
is the hybrid MPI/OpenMP native implementation with a high degree of
parallelism. Namely, in the case of using Intel Xeon Phi accelerators only, it
is necessary to efficiently develop every program cycle per cell of the stage
complexity. Otherwise, due to a lower performance of an Intel Xeon Phi
core as compared to that of CPU, we arrive at the situation when one low-
cost stage can stop the whole scalability. Such a situation takes place in
the GPUPEGAS code [16] at the time step computation, and the problem
remains unsolved for graphic accelerators, but it is solved for Intel Xeon Phi
accelerators. To study the scalability on the mesh with 5123 size we have
performed a series of tests to investigate the effect of the number of acceler-
ator cores on the code speed-up. Thus, the time for computing a single time
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step using one accelerator core was 182.466 seconds, and with an increase
in the number of cores up to 240 the time was 3.408 seconds, with 54 times
speedup. With the use of 8 Intel Xeon Phi 7120 accelerators the scalabil-
ity reached 99.87 %. Comparing the time for computing a single time step
using a maximum number of Intel Xeon Phi cores, which makes 3,408 sec-
onds, with that of 12-core Intel Xeon E5-2697 processor, which makes 8.987
seconds, we attained 2.63 speed-up with the Intel Xeon Phi accelerator as
compared to the 12-core processor Intel Xeon E5-2697.

4. The numerical simulation of interacting galaxies

Two galaxies are set in the self-gravitating hydrodynamic cloud and the
stars/dark matter cloud with an equilibrium profile, differential rotation
profile

vφ =

√
r
∂Φ

∂r
,

where r is a cylindric radius. The mass of every galaxy is equal to M =
1013M�. The clouds move in the opposite directions with the velocities

a b

c d

Figure 1. The column density in M�pc
−2 of gas component

at t = 0 myr (a), 40 myr (b), 80 myr (c), and 120 myr (d)
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a b

c d

Figure 2. The column density in M�pc
−2 of stars and dark matter component

at t = 0 myr (a), 40 myr (b), 80 myr (c), and 120 myr (d)

a b

Figure 3. The column density in M�pc
−2 of molecular hydrogen (a) and

the ratio of star formation in M�pc
−2 myr−1 (b) at t = 120 myr

vcr = 800 km/s. The simulation results are presented in Figures 1–3.

The pictures show one scenario of interacting galaxies, after collision of
galaxies starting the process of the star formation and molecular hydrogen
formation.
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5. Conclusion

In this paper, an approach to constructing a low-dissipation numerical
method is described. The method is based on a combination of the operator-
splitting method, the Godunov method, and the piecewise-parabolic method
on a local stencil. In this paper, we have presented one of the approaches
to simulate the interacting galaxies problem in a minimal subgrid physics
model. The model is based on the solution of the multi-component and two-
phase one-velocity hydrodynamic equations with a variable specific heats
ratio.
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