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Application of a mixed finite element method for
solving 2D nonlinear vorticity equation

V.I. Kuzin, V.V. Kravtchenko

Abstract. A new two-step scheme has been obtained as a result of application of
the finite element method (FEM) and the splitting up method to the 2D nonlinear
vorticity equation. At the first step, the conforming piecewise-linear finite elements
are used; at the second step, non-conforming ones are made use of. The efficiency
of the scheme was tested on each splitting step separately as well as on the problem
as a whole.

Introduction

The problem of finding a plane non-stationary circulation is one of typical
among the ocean dynamics problems. This initial-boundary value problem
is described by a 2D nonlinear vorticity equation. In this paper, we present
a scheme for which the splitting combined with a finite element method
(FEM) is used. In this case, splitting is carried out at different steps of con-
structing a numerical model, including both splitting in terms of physical
processes allowing linearization of the initial problem and further splitting
with respect to time of one of the FEM operators obtained. For construct-
ing FEM operators at the steps of splitting in terms of physical processes,
different types of finite elements are used. Hence, it appears possible to
essentially reduce the number of grid points in a numerical scheme when
passing from one splitting step to another. At the first step, for solving the
linear stream function equation, conforming piecewise-linear finite elements
are used. At the second step, corresponding to the vorticity advection and
diffusion, non-conforming finite elements are used. Finite elements of such
a type were introduced by M. Crouzeix and P.A. Raviart [1] for solving the
stationary Stokes equations. Later these elements were used by B.-L. Hua
and F. Tomasset [2] to obtain a noise-free scheme for two-layer shallow wa-
ter equations. Some of their advantages are listed below. Because of their
orthogonality we can avoid the lumping procedure at the splitting steps
with respect to time. Also, in comparison with the case of conforming finite
elements, a smaller number of grid points is used in the FEM scheme ob-
tained. At the same time, on a standard grid, the degrees of freedom in this
case increase by the factor of 3 that may improve the accuracy of an FEM
solution. The equations obtained conserve transformation laws for some in-
tegral characteristics such as mass and energy with respect to time, which
is important for obtaining correct solutions in terms of physical features.
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Analysis of the FEM operator obtained after using non-conforming finite el-
ements shows that it can be split into two three-point positive semi-definite
operators. As compared to the coordinate-wise splitting, the factorization
goes along the broken lines connecting mesh points. Apparently, such an
approach has not been used yet in the splitting up theory. On the contrary,
in the case of conforming finite elements, there was a splitting into, at least,
three operators, including the diagonal direction [3].

An essential problem of using non-conforming finite elements is that
an FEM solution does not belong to the space of solvability of the initial
problem that demands an additional formal foundation.

1. Statement of the problem

In the domain Q = Ω × (0, T ), let us consider a 2D nonlinear vorticity
equation in terms of a stream function with initial and boundary conditions.
In the dimensionless form [4], we have:

∆Ψt + δJ(∆Ψ,Ψ) + β
∂Ψ
∂x

+ ε∆Ψ− µ∆∆Ψ = f, (x, y, t) ∈ Q;

Ψ(x, y, 0) = Ψ0(x, y), Ψ|∂Ω = 0, ∆Ψ|∂Ω = 0.
(1)

Here Ω is a bounded uni-connected domain in R2 space with the boundary
∂Ω ∈ C2, β = 1, δ, ε, µ ∈ [γ1, γ2], γ2 ≥ γ1 > 0; Ψ0(x, y) ∈ C2(Ω), f =
f(x, y, t) ∈ L2(Ω)× C0((0, T ]);

J(u, v) =

∣∣∣∣∣∣
∂u

∂x

∂v

∂x

∂u

∂y

∂v

∂y

∣∣∣∣∣∣ is Jacobian.

In terms of vorticity ζ = ∆Ψ, equation (1) can be rewritten in the form

ζt + δJ(ζ,Ψ) + β
∂Ψ
∂x

+ εζ − µ∆ζ = f, ∆Ψ = ζ, (x, y, t) ∈ Q;

ζ(x, y, 0) = ∆Ψ0(x, y), Ψ|∂Ω = 0, ζ|∂Ω = 0.
(2)

Let us divide the interval [0, T ] into Nt subintervals with a length τ .
According to a weak approximation method, problem (2) will be solved by
splitting in terms of physical processes [5]: for t ∈ [tn, tn+1],

∆(Ψ1)t + ε∆Ψ1 + β
∂Ψ1

∂x
= f, ∆Ψ1|t=tn = ζ2|t=tn , Ψ1|∂Ω = 0; (3)

(ζ2)t + δJ(ζ2,Ψn+1
1 )− µ∆ζ2 = 0, ζ2|t=tn = ∆Ψ1|t=tn+1 , ζ2|∂Ω = 0, (4)

n = 0, . . . , Nt − 1.
Here the first step is in solving the linear stream function equation with

forcing, and the second one describes advection and diffusion of the vorticity.
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2. Construction of schemes

In Ω, we construct a rectangular grid. Then rectangles of the grid are
divided into triangles by diagonals with variable directions, either positive
or negative (Figure 1).

Let us consider two types of finite elements:

1. Conforming elements ωc
pq are piecewise-linear functions determined by

values at vertices of triangles in the following way:

ωc
pq(xk, yl) =

{
1, (k, l) = (p, q);
0, (k, l) 6= (p, q).

Here (xk, yl) is a vertex of some triangle of the grid.

2. Nonconforming elements ωnc
ij are piecewise-linear functions determined

by values at midpoints of the sides of triangles in the following way:

ωnc
ij (xk, yl) =

{
1, (k, l) = (i, j);
0, (k, l) 6= (i, j).

Here (xk, yl)is a midpoint of a side of some triangle of the grid.

Figure 2 presents a view of the functions. Such functions were considered
in [2] and [6].

Figure 1. A fragment of the grid. Con-
forming finite elements are associated
with •-nodes and nonconforming ones––
with ×-nodes

Figure 2. Nonconforming basis func-
tion ωnc

ij (x, y)

These functions possess some significant features: ωnc
ij are orthogonal

and each conforming element ωc
pq is the half-sum of the non-conforming

ones surrounding it.
We will search for a stream function as a linear combination of conform-

ing finite elements and for vorticity as a linear combination of nonconforming
ones:
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Ψ1 ≈ ψN
c

=
∑

(p,q)∈Nc

ψpq ω
c
pq(x, y),

ζ2 ≈ ϕN
nc

=
∑

(i,j)∈Nnc

ϕij(t)ωnc
ij (x, y),

(5)

where Nnc is a set of mesh points including midpoints of the sides of triangles
and N c is a set of mesh points including the triangles vertices; ϕij(t) and
ψpq are weight coefficients to be determined.

Let us consider splitting steps (3) and (4) in some detail.
After discretization the problem (3) with respect to time we have:

(1
τ

+ ε
)

∆Ψn+1
1 + β

∂Ψn+1
1

∂x
= f +

1
τ

∆Ψn
1 ,

or, taking initial conditions into account,

(1
τ

+ ε
)

∆Ψn+1
1 + β

∂Ψn+1
1

∂x
= f +

1
τ
ζn2 . (6)

After application of the Galerkin method to problem (6), a system of
linear algebraic equations is obtained:

I1

(
ψN

c
, ωc

pq

)
= −

(
f, ωc

pq

)
− 1
τ

(
ϕN

nc
, ωc

pq

)
, (p, q) ∈ N c, (7)

where

I1(u, v) =
∫

Ω

((1
τ

+ ε
)
uxvx +

(1
τ

+ ε
)
uyvy − βuxv

)
dΩ,

ϕN
nc

is a nonconforming FEM solution to problem (4) from the previous
time step.

System (7) is solved by an iterative technique.
A weak formulation of the problem of the second splitting step (4) is the

following:

((ζ2)t, v) + I2(ζ2, v) = (0, v) = 0 ∀v ∈
◦
W

1
2(Ω), t ∈ (tn, tn+1],

(ζ2(x, y, tn), v) = (∆ψN
c
, v) ∀v ∈

◦
W

1
2(Ω),

(8)

where ψN
c

is a conforming FEM solution of the first step (3).

Here
◦
W 1

2(Ω) is a subspace of W 1
2 (Ω), which includes the functions van-

ishing at the boundary of the domain Ω;
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I2(u, v) =
∫

Ω

(
µuxvx + µuyvy + δψN

c
uyvx − δψN

c
uxvy

)
dΩ.

There arises a problem when using the Bubnov–Galerkin method for the
search for an FEM solution ϕN

nc
, which is a linear combination of non-

conforming elements. The point is that when defining a weak solution, it
is required to carry out the integral relation ∀v ∈

◦
W 1

2(Ω) but the functions
ωnc
ij (x, y) have discontinuities at the boundaries of their supporter. So, we

need to introduce the approximate bilinear form

Ih2 (u, v) =
∑
k

∫
Tk

(
µuxvx + µuyvy + δψN

c
uyvx − δψN

c
uxvy

)
dΩ,

where T k are triangles of the domain Ω. In this case a non-conforming
FEM solution ϕN

nc
does not belong to the required space

◦
W 1

2(Ω) as well.
However, the efficiency of the scheme presented was verified earlier with the
help of numerical experiments [7].

As a result, with allowance for orthogonality of non-conforming finite el-
ements and their relation with the conforming ones, the following differential
equation system is obtained:

Mh(Φ)t + ΛhΦ = f, t ∈ [tn, tn+1]; Φ|t=tn = XΨ. (9)

Here Mh = diag(θij/3); [ΛhΦ]ij = Ih2 (ϕN
nc
, ωnc

ij ); [Φ]ij = ϕij , [Ψ]ij = ψij ,
X is a transition matrix from the stream function to the vorticity, obtained
from the relation between non-conforming and conforming elements, θij is
an area of the support of the function ωnc

ij

In this case Λh = Sh+Kh, where the first one is a symmetric operator and
the second one is a skew-symmetric operator corresponding to the symmetric
and skew-symmetric parts of the integral operator.

Analysis of the operator Λh shows that it can be presented as sum of
two 1D positive semi-definite operators Λh1 and Λh2 acting along the broken
lines connecting non-conforming mesh points (Figure 3). Moreover,

Λh1 = Sh1 +Kh
1 ; Λh2 = Sh2 +Kh

2 ,

where Sh = Sh1 + Sh2 , Kh = Kh
1 +Kh

2 , Shr are symmetric operators, Kh
r are

skew-symmetric ones (r = 1, 2).
Such a decomposition of the grid operator allows the use of the splitting

method with respect to time for solving problem (9). In this case, a two-cycle
splitting method is used [8].

Let us divide the interval [tn, tn+1] into the subintervals tn +mτ1 ≤ t ≤
tn + (m+ 1)τ1, τ1 = τ

N1
, m = 0, . . . , N1 − 1, N1 is the number of additional

time subintervals. The system of grid equations consists of a sequence of
the Crank–Nicholson schemes for the operators Λh1 and Λh2 constructed on
the sub-interval [tn +mτ1, tn + (m+ 1)τ1]:
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Figure 3. Direction of operators Λh
1 (—) and Λh

2 (· · · )

(
Mh +

τ1

4
Λh1
)

Φm+1/4 =
(
Mh − τ1

4
Λh1
)

Φm;(
Mh +

τ1

4
Λh2
)(

Φm+1/2 − τ1

2
(Mh)−1fm+1/2

)
=
(
Mh − τ1

4
Λh2
)

Φm+1/4;(
Mh +

τ1

4
Λh2
)

Φm+3/4 =
(
Mh − τ1

4
Λh2
)(

Φm+1/2 +
τ1

2
(Mh)−1fm+1/2

)
;(

Mh +
τ1

4
Λh1
)

Φm+1 =
(
Mh − τ1

4
Λh1
)

Φm+3/4. (10)

To prove approximation of the scheme with respect to time, the Taylor
expansion in series with a restriction on the time space (11) is used:

τ1

4

∥∥(Mh)−1Λhr
∥∥ ≤ 1. (11)

In [8], this method is analyzed. There is shown that the method is
absolutely stable.

3. Numerical experiments

The efficiency of the scheme was verified for each splitting steps separately.
Some of the tests are listed below.
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1. Testing the second splitting step (4):

(ζ2)t + δJ(ζ2,Ψ1)− µ∆ζ2 = 0;

T = 0.1, δ = 10−3, µ = 10−4, Ψ1 = y.

The exact solution is

ζ2 =
1
µπ

sin
π2y

b
· e−π2t ·

(
1− pea1x − qea2x

)
,

q =
ea1/2 − 1

ea1/2 − ea2/2
, p = 1− q,

a1 =
δ

2
+

√
δ2

4
+ π2(1− µ), a2 =

δ

2
−
√
δ2

4
+ π2(1− µ).

A relative error

erel =
max

(i,j)∈Nnc
|ζ2(xi, yj , T )− (ϕij)Nt |

max
(i,j)∈Nnc

|ζ2(xi, yj , T )|

is shown in Table 1.

Table 1. A relative error with respect to the number of
subintervals in space and time

Nx ×Ny ×Nt erel Nx ×Ny ×Nt erel

10 × 10 × 2 1.7 · 10−2 10 × 10 × 20 1.8 · 10−3

10 × 10 × 4 4.0 · 10−3 20 × 20 × 20 9.6 · 10−4

2. A problem with a physical meaning that is in the search for a solution
with allowance for real parameters including the boundary layer. This is
a problem on stabilization with a constantly acting force f = 0.1. Two
versions of initial conditions are considered: zero value and solution to the
Stommel problem

ε∆Ψ + β
∂Ψ
∂x

= f sin
πy

b
.

Since both versions with equal parameters differ only in the form of
a resulting function in the beginning of the process and by the moment
T = 500 give solutions of the same kind with a tendency to stabilization,
below only the first one is presented.
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Table 2. Velocity of stabilization and a maximum of FEM
solution with respect to the number of time steps Nt

Nx ×Ny ×Nt erel MAX

100 × 100 × 10 9.98 · 10−2 1.97 · 10−3

100 × 100 × 100 9.87 · 10−3 1.93 · 10−2

100 × 100 × 1000 6.30 · 10−4 1.22 · 10−1

100 × 100 × 10000 7.10 · 10−6 9.39 · 10−2

100 × 100 × 100000 6.21 · 10−8 9.35 · 10−2

A relative error and a maximum of the FEM solution,

erel =
max

(p,q)∈Nc
|(ψpq)Nt−1 − (ψpq)Nt |

MAX
, MAX = max

(p,q)∈Nc
|(ψpq)Nt |,

and its form are results of the test with the following parameters δ = 10−3,
ε = 10−2, µ = 10−4 and with a fixed time step τ (Table 2 and Figure 4).

At a fixed moment T , the results for schemes with different time steps τ
coincide with one another with an exception of a minor difference in maxima
of solutions, which is also in favor of convergence of the method. It is worth
to note that the kind of the result corresponds quite well to the current
numerical solution of the problem in question.

100 × 100 × 10 100 × 100 × 1000 100 × 100 × 100000

Figure 4. Stabilization of the FEM solution with respect to the number of time
steps 100× 100×Nt: a section along x with y = b/2 (top) and isolines (bottom)
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Conclusion

A new two-step scheme has been obtained as a result of application of the
finite element method (FEM) and the splitting up method to the 2D non-
linear vorticity equation. At the first step, the conforming piecewise-linear
finite elements are used; at the second step, non-conforming ones are made
use of. Such elements allow the reduction of the number of grid points in
a numerical scheme and presentation of a grid operator as two 1D positive
semi-definite operators thus reducing the time needed for successive split-
ting with respect to time. The efficiency of the scheme was tested on each
splitting step separately as well as on the problem as a whole.
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