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A subgrid model for the flow
in the fractal porous media*

G.A. Kuz’min, O.N. Soboleva

We present a subgrid model for the flow of incompressible fluid through fractal
porous rocks. Using the scaling hypothesis for the latter, we derive an expression
for the effective permeability.

1. The problem of subgrid modeling

Rocks have a developed porous structure that influences the fluid flows,
waves and other propagating fields. The choice of the mathematical model
depends on the scales of the process under consideration and the scale of
porosity. If the typical scale of porosity is small when compared to the scale
of process, then continuous model may be suitable. In such models, charac-
teristics of the media is described by the simple constant parameters such
as thermoconduction or elasticity coefficient or another related parameters.
After that the process is modeled by an equation with a set of effective
parameters. In the opposite case, one deals with a model with parameters
that vary in space and in time and the scales of variation are not small when
compared to the scale of process. In that case, one is not able to use the con-
stant parameters. That parameters fluctuate randomly. The mathematical
model of such the media have to be formulated statistically.

It has been recognized that the porous structure may be approximated
by the statistically scale invariant models. This has been led to the use of
various models and the terminology of the physics of disordered phenomena.
In particular, the percolation theory and the fractal models were recognized
to be useful for modeling the flow and dispersion in the porous media (see,
for example, the review in [1, 2]). We consider the scaling model of a random
fractal fields. We derive an equation for the single phase flow in the fractal
porous media, keeping in mind that the similar methods might be useful for
the wave field evolution and for another related characteristics.

The formulation of the model is given in the next section. After that
we consider the problem of subgrid modeling of the heat conduction in such
a media. Physically, the problem is formulated as follows. Let the incom-
pressible fluid steadily flow through a media with fluctuating permeability
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coefficient £(x). At low Reynolds number, the velocity is given by the Darcy
law v = ¢(2)Vp, where p is the pressure. The incompressibility condition
div v = 0 leads to the equation for p
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We assume that the fluctuations of € from extreme wide range of scales exists
so that direct computation of the pressure field p(z) from the equation is
not possible. Is it possible to derive from 1 an equation that describe only
the fluctuating pressure field of the largest scale? Similar problem arise
in various regions of physics. In the theory of turbulent flow at very large
Reynolds number, the main information is contained in the pulsations of the
largest scale. Extensive efforts were spent to derive a mathematical model
that contains only such large scale fluctuations. Similar model may be of
interest in the problem under consideration.

Let us divide the fluctuating function £(z) into two components. The
large scale component is obtained from ¢(z) via a spatial smoothing

ei(z) = /W(r, Ne(z +r) dPr. (2)

The short wave (subgrid) component is &’ = £ — ¢;. In the above formula,
D =1,2,3 is the spatial dimension, W (r, 1) is the filter function that tends
to zero at r > I and satisfies [ W(r,l)dPr = 1. Often one uses either the
Gaussian filter W (r,I) = (1/7P/2) exp(—r?/I2) or the Fourier filter. We use
the Fourier filter that omits all the Fourier harmonics whose wavelength is
shorter than some threshold value /.

The statistical distribution for p is determined by that for £ via equation
(1). We define the large scale ongrid pressure field p;(z) as a solution of (1)
where the large scale component ¢ is fixed, but that is averaged over the
statistical distribution of ¢’, pi(z) = (p(z));. The complementary subgrid
component p’ = p — p; is not supposed to be interesting for us, but it can
not generally be thrown out from the filtered equation
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because the second term may be essential. The choice of the form of the
second term in (3) determines the subgrid model. We derive simple gradient
form for this term using the scale and conformal invariance hypothesis for
the fractal media.

2. The fractal porous media

Let us consider the statistics of the smoothed field (2). At — 0, e/(z) —
£(z). The dimensionless field ¥(z,l,l') = &"(z)/e(z) is similar to the
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dimensionless fields of Kolmogorov [3] and will be supposed to have the
scale symmetry. We suppose that all correlation functions of ¥(z,I,1") =
g"(x)/e'(x) are invariant to the scale transform: when the points & and
the scales ! are transformed as @« — K=, ! = K, where K is any numeric
factor, the correlation functions of ¥ (z,!,!’) remain the same.

The field 9 (,!,I') has too many arguments. A simpler field that has
the same information is obtained by considering the limit I’ — . From the
definition of v (a, [, '), one concludes that the field

nel
p(z,l) = Qﬁl (4)

has the correlation functions that are invariant to scale transformations.
The relation (4) is considered as the equation for € when the scale invariant
field @(x,!) is given. All essential information about the fractal porous
media is contained in the statistical properties of (z,!). The media will
be considered as known if the statistical distribution of ¢(zx,1) is given.
Characterization of the media in terms of statistics of ¢(, ) has an obvious
advantage. All statistical properties of the fractal density e(x) = £(z,! |
L — 0) are determined by the field ¢. Assuming some model for ¢, we
obtain full description of €. In [4], the correlation functions for fractal were
derived, assuming that ¢ is the scale and conformal symmetric field in some
subrange.

In practice, the fluctuations may be observed in some finite range of
scales I, < | < L. Equation (4) have to be supplemented by the boundary
condition on any end of the range (I, L). For definiteness, the boundary
condition at | = L will be assumed to be fixed e(z, L) = g9 = const. The
solution to (4) is as follows:

e(x,l) = egexp [— f‘L o(z, Il)a;—il] . (5)

3. Scale symmetry N

.
We consider the scale and conformal pair correlation function of p(z, {):

®(z,y,1,1") = (p(,1), ¢(y, 1')).

The spatial homogeneity and isotropy implies

(D(m -y, l’) = (I)((:B - y)zv l I,)s

where the same letter @, is used for the sake of simplicity in the right-hand
side.

The scale symmetry says that the correlation remains unchanged if all
spatial scales are extended in K times
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(= - 9)*,L1) = @ (K*(@ - y), KL, KI'),

where K is a positive factor. This equation implies that ® depends on two
arguments rather than on three ones '

- 2 4
o -y 10 = o200, (6)
The random field ¢ is assumed to be Gaussian distributed. Next, at
® = y it is assumed to be §-correlated in the logarithm of scale

®(I'/l) = ®od(Inl — In ). (7)

This supposition corresponds to the lognlormal model [6].

4. The subgrid model

We use the renormalization group method to find a suitable model for the
subgrid term. Subtracting (3) from (1), we obtain the equation for the
subgrid pulsations

Ap'+ VXVpy + p[xVp1Vine, + Vp'Vine; + xAp ] +

AV(XVP' = (x, V') + uA(XVP' = (x, VP'}1)VIne, =0, (8)

where x(z, 1) = fﬁ:‘,{l @(x,7)dr, and the parameters u, A are introduced for

the following reasons. Equation (8) is used to estimate the influence of the
subgrid pulsations on the ongrid ones. If the solution to (8) was known,
one might substitute this solution for p’ in (3) obtaining the equation that
contains the ongrid field p;. In that case, we would have an exact model.
Because this solution is not known, one might try to use the perturbation
theory. Let us denote Iy, [ to be the spatial scales of the ongrid and subgrid
component. In our case [ ~ [j, but we shall suppose that u ~ /Il €1
in order to derive a local gradient model. General model have to contain
nonlocal functional dependencies of the fields p’, p;. Another useful param-
eter is A ~ €'/e;. The formal parameters y, A are used for ordering the
perturbation expansion. The equation of the lowest order is as follows:

Ap' =~V XVinp1.

The solution p; = —A~! (V,,xVi,p1), where A~! is the operator that is
inverse to the Laplace operator. In the simplest model, one should retain
the terms with lowest derivative of the large scale field p;. One concludes
that the simplest model for the gradient of the subgrid field is Vip2 =
—A~1(V;VinX) Vinp1. The similar solution was obtained [7] for the dielectric
permeability of nonhomogeneous media. Substituting that solution into the
filtered equation, one has the following expression for the subgrid term in (3)
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One sees that the constant o in (5) depends on the grid scale as the power
dln o q)g -
dnl — "D  co=¢wll/L) %/D, (9)

Thus, if one wishes to use the coarser grid when computing the flow through
a fractal matter, one should multiply the effective permeability by a constant
factor according to (9).-

Equality (9) is the main result of the present paper. It contains two
constants o and €go. The latter describes the mean flow through the media
U = g9oVP. The former is the constant of the subgrid model. The fact that
those constants are different, is the evidence that the subgrid fluctuations
of the pressure are essential. On the other hand, one sees that the power
in (9) is small at large D. This gives the hope that 1/D may be used as a
parameter of expansion in a perturbation theory.

Formula (9) was obtained within a crude gradient model. Many questions
have to be clarified. In order to incorporate more physics into the model, one
have to use the next terms of the perturbation series that follows from (8).
The numerical values will alter, but we hope that the scaling laws remain
to be valid.
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