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Modified Runge-Kutta method

Yu.l. Kuznetsov

Modern Runge-Kutta method of solving ODE bears a slight resemblance with the classical
(explicit) method and is based on the transformation of the differential equation to the
integral one. The contents of the mathematical theory was formulated by J.C. Butcher
et all (see [1}, [2]). Nevertheless, the technique of constracting fundamental equations of
RK-method remained unchanged. In this paper new principles are lying in the basis of
constructing fundamental equations. Some new ideas are used for solving the fundamental
equations, in particular, the principle of nilpotency for explicit, diagonal and singly-
implicit RK-methods is successively performed.

1. Discretization

Let an ordinary differential equation

%‘% = f(t,y), 0<t<T, y(0)= g, 1)

be given. We aim at constructing its approximate solution yj at the discrete
points tx,tx € [0,T). If‘y, is found, then the solution y,4+; at the point
tp+1 = tn + 7 according to the Runge-Kutta method is described by the
system of algebraic equations

M = Ya,
% = Ya+TrieBiifiy F=11)m+1, (2)
Yntl1 = Tm4

with the notations

i f(&>m;),
& = tat N, i=0(1)m+1, (3)
A = 0, Appi=1, Aj<Aja.

The value of
Entl = Y(tn+1) = Yn41 (4)
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is said to be the global truncation error, while

lng1 = Y(tn1) = Gnt1 (5)

is the local truncation error. Here and in the sequel y(2n41) is the proximate
solution of equation (1.1) at the point tat1, Jns1 i8 the solution of system
(1.2) after replacement of yn by y(tn)-

Following the test function principle, we will construct the RK-scheme
thus providing the exact solution of pequation (1), when f(t,y) has some
specific form, namely

flt,y) =11, 1=11)M, (6)
where M is some positive integer. In this case the function
fit,y) =M+ 1)tM

could be used for the characterization of the local truncation error

m
L1 = Y(tnga) = Gnpr = thst — 3 — (M + 1)) Bmi€, ()
=1

since it depends on the RK-scheme only and does not depend on any
properties of differential equation (1).

Let us apply the test functions method for determining the parameters
Bij» Xi- Equations (2) for the right-hand side, defined in (6), admit the
form

i = th+71 X Bil(ta + X))
=t + TR, Tith IOk Xy
1 - -
B+ Ty KCH T T By

i % d¥yn -
= th+ Yk 'F!'?#,‘kz?ﬂ ﬁ"-f)‘;f Y

where

i
~OkN1- k)
is the binomial coefficient. Let us constitute the difference, which is the
residual g; of the quasi-solution at the intermediate nodes §;,

Cr

- k A
s = m— €= The (FSR A - M) T

, ®)
i=1()m+1, I1=11)M+1,
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using the above equality and definition (3). Condition gm41 = 0 for arbi-
trary t, and 7 implies equalities

Y B =2, k=M. ©)

J=1
The local error is determined from (7) for I = M + 1. We obtain

M+1

e M+1 - J i e M41=j

M — tmar = ) Chppathr™ 1™
j=0

1l

Im.+1

m
—tMH (M + 1)) B ilta + XYM

i=1
M . _ M o m .
= z Clrp ™™ — (M + 1)r Z Ci M- Z B A,
i=0 i=0 =1
With the help of the identity

(M +1)Cly = (M = §+1)Cip

we find
M L. . v m .
In+l = ZC}?\J+1tfer+l—J (1 - (M -Jj+ 1) z ﬂm-!-l'i'XiM*J) *
J=0 i=1
The final relation is obtained with the use of (9):
Iy = (1 - (M + 1)23,,,,,1,.-)\9‘) M+ (10)
i=1

For further analysis let us introduce the matrix and vector notations.

Bu bz ... bPim
g=| Pn Bz ... Pom

.....................

b; (Biry--yBim), 1=11)m+1,

A = diag(\,...,An),  h=diag(1,1/2,...,1/m),
n = (nlv---,nm)T: f= (fla'--tfm)Tg

g = (gli--‘igm)T1 €= (1&"'a1)Ta
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where B, A, h are matrices, b; are row vectors and 7, f, g are column vectors.
In these notations equations (1.2) admit the form of

n = yne+ TBf,

, (11)
Ynt1 = Yot Thmyrf,
and equalities (1.9) - the form of
bmyr Al = % k= 1(1)M. (12)

Assuming M > m, select the first m of these equations in order to deter-
mine b,,+1, and represent them in the vector form

bnp1W = €Th, (13)
where
1 A A '1“'1
2 m-—1
1 A Afn Am-1

is the Vandermonde matrix.

Equations (12) are obtained by analyzing the test functions behaviour
at the point t,4;. One may expect that the analysis of these functions at
the intermediate nodes £;,j = 1(1)m will bring about new equations with
respect to the parameters §;;, A;. However it is not so. Let us present the
corresponding calculations. Since

dgi _ dn; : - rk
E"E_ﬁ Z k+1 kzﬂ‘l)‘ ik

expression
d rk g+l
o= B -f=TkB- M)A i
d.l:+1 (15)

= £k, (w Mt

for I = 2(1)M +1 is a polynomial of order /-2 with respect to t,,. Substitute
f from (15) into (11):

dn dg
= B_ —_—
e+ 7 di,, Bdtﬂ
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dn dg
Yn+1'= UYn + Tbm+l dt Tbm+1E.

In order to eliminate dn/dt, from the second equation, differentiate the
first one:
d’"’ln a dk-l dkn d

atk1 gl e""TBdtk "Bdtk'

multiply it by (B)*~? and sum up with respect to k from 2 to M + 1.
Obtain

M
dT,’ — k— ld Yn k= 1 M lf)
dtn_kz_:( B) —-e-—kZ( B) dtk+(3) i
thereto, for the test functions according to (8) holds
dM+1’7 3 dM"'lyn B dM+lg —o
pr i a
Then
M+1 ; M .
i1 P yn . dig .
Yn+1 = Yn + E bm-}-lBJ le g‘ljn‘l'" - me+lBJ 1__3.71. (16)
Jj=1 dtn =1 dt‘:‘l

With regard to relation (15), the second sum on the right-hand side admits
the form

Zb B _f:

=1
M—J+1 k+j k43

= i-1 k-1,T u_
= §bm+13 kz_: (kB - A)A o

M+1 d' i-1
= Z dti, Z(t )L m+1BJ M- 5)B - M)A e

1=2 i=1

M+1 i-1

id'Yn 3 i Ai—i—

= Z 3 Z(:— - b1 BIATI e

i=2

i-1

Z m+1BJ IA' -’e
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In the second sum, over j, we introduce substitution j — 1 — j, which
makes clear that both sums differ in the limits of summation only. Thus

M+1

S b 1L > 21 (b B! LGS )
m —T = T — m =l — — e},
2 b BTG = 2y B G-

which yields
M+1 i i
T dy -
Yn+l = Yn + Z (I — 1) dtinbm"'lA‘ le
i=1 Pom

and comparing this representation with the Taylor expansion of the poly-
nomial y(t,+1) of the order less or equal to M + 1,

— 2 S dn
y(tn+1) =Un + s 2!1- dt:.‘

for arbitrary , we return to relations (12) and (10), which can be rewritten
in the form
E;=0, j=11)M
7 J ( ) ’ (1 7)
lny1 = EM+1"'M+1,
where .
EJ' =1- jbm+1A"le. (18)
Equations (12) for given );,i = 1(1)m, determine only the row vector
bm+1. We also have to evaluate some m? elements of the matrix B. More-
over, the elements ); are also to be specified. Therefore, the test functions
approach in the Runge-Kutta method is insufficient. In order to obtain
new relations, it is necessary to restrict the behaviour of the test functions
at the intermediate nodes &;. To this end, we apply again representation
(16). Summands

. d.’f—l dn
b1 B ——= | = - j=1(1)N -1 19
m+1 2! (dtn y (1) ) (19)
where N is some positive integer, are some residual functionals of solution
at the intermediate nodes if 7 is considered some approximation to solution.
Let us require 7; to be a weak approximation of the solution of equation (1)
at the intermediate node §;, at least, for test functions (6) when [ = 1(1)N,
i.e., annihilate summands (19). Combined with relations (15), it results in
equation
b1 B~ T4 (kB — AAFteqr £ = 0

! dt"+J - %

(20)
1=2(1)N, j=1(1)N-1.
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the number N will be said to be the order of weak approximation.

Remark 1. The condition of weak approximation (20) can be extended to
the region of negative orders of the differentiation operator (i.e., to the
region of the integration operators of the corresponding multiplicity), by
introduction of j = 0, —1, etc. This extension will be used in Section 6.1.

Due to an arbitrary choice of 7, relation (20) implies

bms1Bi~1(kB — A)A*-1e = 0,
2<j+k<N, j=11)N-1,

(21)

and one can derive sequentially

. - 1 .
bt BA e = (1/k)bmi1 BT A% = ebmn B RAR e
—_ - (k- 1)! k+j~1
= ,..= mbm+11\ I-le.

Therefore,

i A k— k=1)! j—
bm+lBJAk le = E+i-1 !bm+1Ak+J le

= (k = 1)bpn41 BF*+71e, ‘ (22)
2<k+j<N, j=1(1)N-L

Assuming M < N, with the help of (12) we derive the fundamental equa-
tions of the Runge-Kutta method:

i A k—1 k-1)!
bm+1BJAk le 4= iR

k= 0(1)M - j, j=1(1)M.

(23)

Therefore, in order to evaluate the parameters of the RK-schemes, one
can apply equations (23), and for N > M - equations (22) as well. The
relationship between m,M and N is not a priori fixed and may be ar-
bitrary. We restrict ourselves to consideration of such RK-schemes, for
which inequalities N > M > m take place. As we will see later, the pre-
cise relations between these numbers are defined by the form of the matrix
B. Thus, the analysis of the RK-schemes is essentially connected with the
analysis of the matrices B. The circumstance that equations (23) are not
generally sufficient for evaluation of b,,41, B, A, makes us to impose certain
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restrictions on the form of the matrix B. In the sequel, we will consider
the characteristic polynomial of the matrix B:

Qm(X) =A™ =) giA™ (24)
j=1
and identity
m
B™ =) g¢;B™. (25)
j=1

following the Hamilton-Cayley theorem.

2. Nilpotent RK-methods

A large group of the RK-schemes is based on the property of matrix nilpo-
tency. Let p be some real number. The matrix B — uE is said to be
nilpotent, if for some positive integer ! the equality (B — pE ) = 0 holds.

It is evident, that if (B — uE)' = 0, then (B — pE)*! = 0. Positive
integer ind is said to be the nilpotency index of the matrix b — pE, if
(B — pE)™ = 0, but (B — pE)™"! # 0. The nilpotency index does
not exceed the order of the matrix , i.e., ind < m. Indeed, the matrix
B — uE cannot be nilpotent if at least one of its eigenvalues is non-zero.
Otherwise, if all the eigenvalues are equal to zero, then its characteristic
polynomial is A™ and the Hamilton-Cayley theorem yields (B — pE)™ = 0.
The nilpotency index coincides with the order of the minimum matrix
polynomial. I ind = m, i.e., the minimum polynomial coincides with
the characteristic polynomial, the matrix is said to be complete. If the
matrix B — pE is complete, then the matrix B is also complete with the
characteristic polynomial (A — g)™, i.e., with m-multiple eigenvalue .

Only one eigenvector U; corresponds to a complete nilpotent matrix
B —pE. This vector belongs to the set of the adjoint vectors U; of height ¢,
satisfying the equation U;(B—uE)' = 0 under condition U;(B—pE)~! # 0,
i = 1(1)ind. These relations define a recursive connection U;y3(B — pE) =
U;, Uy(B - pE) = 0. The vectors U; are linearly independent.

Definition. The RK-method with nilpotent matriz B — uE is said to be the
nilpotent RK-method.

According to (1.24), the characteristic polynomial of the matrix B of
the nilpotent RK-method is

Qm(A) = (A= p)™ = A" 4 Y (1Y CLu A", (1)

i=1
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hence ' o
gi = (-1Y7'Chp?, j=11)m. (2)

The powers of such a matrix are of a specific form, established by the
following assertion.

Lemma 2.1. For k > 0 representation
m i % i
Bk = Y (—1)7ICk, L Cati it B, (3)
i=1

1s valid.

Proof. Representations (1.25) and (2) imply
m . - . .
=Y (-1)7'Cip B™, (4)
i=1
i.e., representation (3) for k = 0. Multiply (3) by B, eliminate B™ by
means of (4) and apply identity
k+j k+j+1
CrinCin = CiriCili = Cu¥jCiimins (5)

which can be directly verified. The equality obtained coincides with (3)
after substitution of k instead of k + 1. Therefore, all the requirements
of the induction method are justified and the assertion of the lemma is
proved. =]

Let us employ the nilpotency property of the matrix B~ puE and trans-
form fundamental relations (1.23). Multiplying equalities

Jj
(B—muEY =) Ci(-p) B~
i=0
by bm+1 on the left and by A¥~e on the right, find from (1.23) that

—— k .
bm+l(B—}"E)JAk € = ;CJ(’:_‘_J ))l(")

(- u)’(k-—l)'z (+k)'( 1/p).



26 Yu.l. Kuznetsov

The sum on the right-hand side to within a factor is the k-th Laguerre
polynomial derivative of the (j + k)-th order with respect to the variable
—1, Therefore,

mH(B REY AF-te = pi ftiic®) (1/p),

(6)
=11)M -3, j=0(1)M-1.

These relations enable us to ascertain the nature of the vector bp,41.

Lemma 2.2. The vector by 41 is the left adjoint vector of height ind for the

matriz B, defined in (1), if and only if u=! is not a root of the polynomial
1

L.

Proof. If by, 1 is the adjoint vector of height ind, then by, 41(B—pE)d-1 #
0. By definition (6)

bms1(B — pE)™le = c“ 2(1/p).

In the next section some properties of the Laguerre polynomials will be
studied, particularly (12), according to which the right-hand side of the
given equality may not turn to zero for u = 0. Hence, the assertion of the
lemma is valid. a

Therefore, in the conditions of Lemma 2.2, the vector b4, is the ad-
joint vector of height ind, hence the vectors U; = by (B — pE)™% i =
1(1)ind, are linearly independent. Note that weak approximation condi-
tions (1.21) are the relations of Vi = (kB — A)A*~le being orthogonal to
rj =bm41 B, 5 = 1(1)N — k.

Lemma 2.3. In the nilpotent RK-method the vectors r; = bmHBj‘l, j=
1(1)ind, are linearly independent.

Proof. The vectors Uind—j+1 = bm41(B - pE) - for the nilpotent matrix
B — pE are linearly independent, since they are adjoint vectors of height
ind — j + 1. Since

md—J+1 2( P)J_-'C'—lrl

1=1

and the coefficient of r; is equal to one, then the transformation of the
vectors Up_j41 into the vectors 7, 7 = 1(1)ind is carried out with the
help of a lower triangle matrix of the order ind with the unit diagonal, i.e.,
non-degenerate. It provides validity of the lemma. o
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Consider some properties of the Laguerre polynomials Li())

L::(A)—Z( 1)“" iCIN. (7)

=0

It is easy to check, that they satisfy the recursive relations

LA = o,
Lo(A) = 1, (8)
(k+1)Lip1(A) = (A =2k = 1)La(N) = kLe_s (),

and this implies that the roots A(k) Lk(z\f-k)) = 0,7 = 1(1)k, arranged in
ascending order, are real, single and satisfy separation condition

M <P O, =10k ®)

By the sequential differentiation of representation (7), evaluate

LYy = Z( 1)*-1 ) ciy-, (10)
3=l
and, also,
10,0y = BRI~ pyeeigi X ad 11
L) = ;0( G (11)
This yields
! 1 1
k,gul( ) L (12)
for u — 0.
The Laguerre polynomials satisfy also relations
LPMW+LN.0) = L,,(A), (13)
L)+ L) = DpEh, (14)

which is easily checked with the help of identities

. -_1 - .
Ci+Ci =Gl

_ . . (15)
G+ 1)(:,1,+1 =kCj_,.
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Lemma 2.4. The polynomials LE )(J\) satisfy the recurrent relations

Dm = o,
) _
90 = 1, (16)

(k=i +DIFLM) = (A-2+j- LYK - kLD (), k2.
In particularly, the conditions L&l)(ugk)) = (, imply inequalities
v B B = 1)k (17)
Lemma 2.5. The inequalities
A <y = 1(Dm, (18)
are valid.

Proof. From Lemma 4.3 the polynomial

A
m+1

L0, (A) = Lt (A) + Lin(A) (19)

of order n + 1 has the roots vfm"'l), i = 1(1)m, V&mﬁ) = 0, which are
separated by the roots Agm). The coefficients of polynomials ng—l(’\) in rep-
resentation (11) have an alternative sign, therefore the value »{™*"), Alm)

i = 1(1)m, will be real and positive. a

Equations (6) define the nilpotent RK-method. Let us find the dis-
cretization order of this method. This is proved to be essentially connected
with the nilpotency index of the matrix B — uF.

Lemma 2.8. The discretization order of the nilpotent RK-method defined
by (6) under condition

L), (ﬁ) #0 (20)

and in case of solubility of equations (1.23), is equal to the nilpotency indez,
i.e., M = ind. If N > ind + 1, then under additional condition

1 1
Li('nzi+1 (;) = O: (21)

the order of accuracy is equal to ind + 1. Equality is impossible.



Modified Runge-Kulla method 29

~ Proof According to relations (1.17), (1.18), (1.21), obtain in the condi-
tions of the lemma
E; = 1—jbnu1Ai~te=1=jbpnp1B e,

22
j=11)N, )

Ej =0, j=11)M,
EM+1 = 1—(M+1)bm+1AMe.

Equalities (22) may take place only in case of their consistency. As soon
as, according to Lemma 2.2, the vectors r; = bms1B7"1,j = 1(1)ind, are
linearly independent if (20) holds, no additional relations are imposed on
equalities r;e = (§!)~1,7 = 1(1)ind. Their solvability signifies E; = 0,5 =
1(1)ind. Another situation occurs if the vectors r,l = ind + 1(1)N are
involved. The nilpotency property

1
B'= -y (-w'CiB"

=1

(23)

imposes a certain relationship on the vectors r;,j = 1(1)ind + 1, thus

ind
Eingy1 = 1+ (ind+ 1)) (~p)'Clagbms1 B e

i=1
ind 1 1 i

o d d—i

- Gt St (2)

or, in accordance with (11),
. in 1
Einas1 = indp™iL{), (p) (24)

This expression is derived with the help of the second form of repre-
sentation of E; in (22), i.e., with the use of the weak approximation and
condition N > M. The condition E;,34+; = 0 cannot be satisfied for u = 0
by virtue of (12) and is attained only under condition (21). In this case
M > ind + 1. Otherwise, if condition (21) is not satisfied, then E;,441 # 0
and M = ind.

Let us make clear then if equality M = ind + 2 is possible. Since E; =

0,7 = 1(1)ind + 1, similarly to E;,441, evaluate applying the mlpotency
property, assuming N > M,

1
Eindsz = (ind + 1)lpm 1L, (,u) .
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By virtue of the roots of the polynomials LS;Z[ +1(A) and Lf-z +2(A) and
being separated, simultaneous annihilation of E;,441 and F;n442 is impos-
sible. Thus, (21) implies M = ind+ 1,N > M

Therefore, taking care of a better approximation, one has to choose a
matrix with the nilpotency index m, i.e., a complete one. In this case the

row vector bpy4; is determined by definition of A;,i = 1(1)m as it follows
from (1.13).

Definition. The nilpotent RK-method is said to be complete if the matriz
B is complete.

With regard to Lemma 4, one may write down equations (6) for the
complete RK-method for M = m in the form

i A k— ;i (k=1)15! £ (K
bm41(B — pEY A¥-1e = pi 2l L§‘+)k (11?) ’

(25)
k=1(1)ym—-3j, j=0(1)m-1.

The local trancation error is determined by the value

Int1 = Epp 7™, (26)

thereto, according to (22),

Emyy = mp™ L) (;17) . (27)
Let us express with the help of ¢; the stability function R(7)
R(t) =14 tbpy1(E - 7B) e
For this purpose, define sequence
v = 1,
ek = Tk —qk, k=1(1)m,
or
vo = 1,
rhor = 1-YT, g, k= 1(l)m,

which is the Horner sequence of the polynomial Q,,(A) at the point A = 71,
It is easy to check that the sequence of polynomials defined this way satisfies

the relation
1 m-—1
ym—j—1
TOm Z {PJ’\ L]
=0

(28)

(1- T)\)_l =
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thus, according to the Cayley-Hamilton theorem,

m—1

1
Rr)=1+4+ — Z Pkbmy1B™* e
Pm 120

or
m-—1

1
R(r)=1+ B Z Pkbmp1 B Fle = —

m = om 2 ( k)’

The transformation is carried out with regard to (1.23). As soon as due to
(28)

m—k rm- k+j
mz(m I Z(m— Z;"J(m k)l
rm— o m k-1
= kz_%(m—k)' qu*"(m k)'
_ =i k-5 _
- § o J)' E ,,_2,:, (m— B
_ LA qk+j—m
B 1+J§ JE_; k—"§+l (m ~ E)t*
then
R L Thtyrd ( k=1 '—k.)
(r) = 1- Y, ar* '
is valid.

In the diagonally implicit and singly implicit methods the characteristic
polynomial is defined by equalities (2.1), (2.2), thus

To™ Thool-1* () gy
(1= pmr)m
To(urY L (1/p)
(1= pr)m

RK-method is said to be L-stable, if R(1) — 0 at T — —oo. Therefore,
the following assertion is valid.

R(r) =

Lemma 2.7. The mazimal achieved order of accuracy of L-stable nilpotent

RK-method is equal to the nilpotent indez (M = ind) and always less than
m.
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Proof. The condition of L-stability implies the equality Ly () = 0. In this

case Lm_l(%) # 0 and L,(,P(%) # 0 is valid. Sequently, the assertion of the
lemma follows from Lemma 2.6. a

3. The DIRK-method

From all matrices B satisfying definition (2.1) let us first consider the lower
triangular one

U
B p 0

B=| B Pz n (1)
ﬁr.nl ﬂm? e ﬂm,m-—l H

Definition. The nilpotent RK-method with lower triangular matriz B is
said to be the DIRK-method (diagonally implicit RK method).

Elements §3;;_j,i = j+ 1(1)m, form j-th diagonal of the matrix B. The
only element of (m — 1)-th diagonal is 8.

Definition. j-th diagonal will be said to be the boundary one, if all the
elements above this diagonal are equal to zero, i.e., Biyki-; = 0,1 = j +
1(1)m,k > 0.

According to the definition, the first diagonal is the boundary one in
the matrix B — pFE, if B;i_1 # 0 at least for one ¢ (which isassumed below).

Lemma 3.1. j-th diagonal is the boundary one for the matriz (B — nE)Y.
The element wy, at the intersection of k -th row and l-th column of this
matriz is equal to

k=1 p-1 y-1
w}:[ = Z ﬂkp 2 ﬁpq . -ﬂry Z ﬁyzﬁzh (2)
p=l+3-1 g=Il+;-2 z=l41

with j — 1-fold summation.

It follows from (2), in particular, that wl, = 0, if & < I+ j, since the
upper summation limit becomes less than the lower one. Therefore, the
elements w} 41, constitute the boundary diagonal and are equal to

‘ I+
wl =[] Bii-1, 1=100)m -4 (3)

1=[+1
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Lemma 3.2. For the nilpotency indez of the matriz B — pFE to be equal to
m, it is necessary and sufficient to satisfy conditions

Biis1 #0, i=2(1)m. (4)
Proof. Let the nilpotency index of the matrix B—uFE be equal to m. Then
wiol =[] Bii-1 #0, (5)

=2

is the only element of the boundary diagonal of the matrix (B — pE)™~1,
This implies the necessity. If 3;;_; # 0,7 = 2(1)m, then the same equality
implies also the sufficiency. a

The preceding analysis requires the solvability of equations (2.25), which
is related, in particular, to the choice of x4 and the nodes A;,i = 1(1)m. In
order to study the solvability, assume N = m and introduce a ‘Tow-vector
O(j) = (b1j,-..,8;;), such that

(8155 ---,855,0,...,0) = bpy1(B — pE)™,

and system (2.25) is represented in the form

bmsr(B — pE)"~iAke = TI_ 0,0k = gi

=1

(6)
k=0(1)j~1, j=11)m,
thereto " ) )
i Am-J) m~j p(k+1) 1
G (m _ J + k+ 1)!# Lm-3+k+l (u) . (7)

For a fixed j, these relations define a system of equations with the Vander-
monde matrix W; of the order j,

1 A ..o N7
1 A At
wi=| o ®)
1\ A1
with the determinant
[W;| = [Wj—almi—1(2)), (9)
where _ .
J 7 )
() =[O0 =) =Y ¥, =1, (10)
=1 I=0
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and the right-hand side

G(j) = (g,---»90_y)- = (11)
Therefore, equations (6) may be rewritten in the vector form
0W; =G(), Jj=11)m. (12)

In the assumption that all A; are different, |W;| # 0 according to (9) and
©(j) are uniquely determined from (12). Particularly, the elements By41,i
are found, since
O(m) = bm+1. (13)
If the matrix B — uE is to have the nilpotency index equal to m, the
nodes A;,i = 1(1)m should be subject to some conditions. According to
Lemma 3.2, the elements, §;;_1,¢ = 2(1)m, being non-zero is the necessary
and sufficient condition for the gquality ind = m. Since j-th column of
the matrix (B - ,uE)”“JF is w:j_’ em, where e, is m-th column of the unit
matrix E, )
0ij = Bmi1,mtp;’
and, by virtue of (3),

m
8i; = [ [ Brsrs-

=
Therefore, if Bni1,m # 0, then 8;; should turn to zero for no j,j = 1(1)m.
Since 6;; are determined from the solution of system (6) with the fixed
right-hand side (if some p is chosen), then the matrices of these systems,
i.e., the nodes A;, j = 2(1)m should be selected that as to provide 8;; being
non-zero. Let us find some necessary conditions for the latter. According
to the Cramer rule, equation (6) yields

by = ik, j=10m =1, (14)
where
1 Ay N
Ajyr = 1 ..... )\J,\; ,
g(gJ'+1 gii+1 gj:"'l

thus 6;4+1,j+1, if and only if Aj1; = 0. The determinant Ajy, differs from
|W;41] in the last row only, and can be easily calculated. According to (9),

(10)

J' .

i—1

Wit = W31 3 ejunizh,
{=0
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which is the expansion of the determinant with respect to the last row.
Therefore, replacing the last row only, find

i

+1

Ajpr = Wi Y ciuglly.
1=0

Thus, for the single nodes X;, i = 1(1)m in order to satisfy the equality
0;41,;+1 = 0, it is necessary and sufficient to satisfy condition

J

Y gt =0, j=1(l)m-1L (15)
=0
Since
1i(A) = (A = Aj)mi-a(A),
then
€50 = ]-a
Cji = Cj-1i— AjCi1,i-1, i = 1(1)7,
Cj_l’j = 05 .

and the substitution of these relations into (15) brings about equality
i=1 41

— EJ':O cj_l:lgj'-—l
= == =

Yizo '3:'-1.!93!-!-1

which is necessary and sufficient for #;41,j41 = 0,7 = 1(1)m — 1. This fact
is expressed in

Aj

, (16)

Theorem 3.1. For the triangular nilpotent matriz B — pE with single X;,
i = 1(1)m to have the nilpotency indez equal to m and the vector bp,4q to
be the adjoint vector of height m, it is necessary and sufficient that

1) condition (16) be violated for all j;

2) LY)(1/p) # 0.

In the meantime, condition (16) is the condition of A; being a multiple
node, A; = Aj41, for all the other being single. Indeed, in this case |[W;41| =
0, since mj(Aj4+1) = 0, and the Kronecker-Capelli theorem requires the
equality of the ranks of the extended matrix and the basic one for a solution
of system (12) to exist, thus it is necessary to satisfy the condition Aj4; =
0, i.e., condition (16). More precise conditions of the existence of multiple
roots and an algorithm of their calculation is contained in
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Theorem 3.2. For the triangular nilpotent matriz B— pE with m—2 single
roots and one double, A\ = A\g41,2 < k £ m — 1, to have the nilpotency
indez equal to m and the vector by,4, to be its adjoint vector of height m, it
is necessary and sufficient to satisfy simultaneously the conditions:
1) equality (16) holds for j = k, but does not take place for j = 2(1)k—-1;
2) for j = k + 2(1)m equalities

J=1yIl-i _j+1
2.—0 Cim14 Limi )‘k-i-l J-l 1

A=
4 =1 ;+1
Y120 Ci-1i1 Et—g k+1 F5-i1-1

are valid;
$) LR(1/m) # 0.

In the sequel, we restrict ourselves to the case of the single nodes A;,i =
1(1)m and assume that they are chosen with regard to Theorem 3.1.

Equations (2.25) are essentially non-linear. Even after the calculation
of the elements 8;; from equations (6), this non-linearity still takes place.
Thus it is important to construct an algorithm providing the solution of
system (6) in case the number x and the nodes A;,i = 1(1)m are properly
chosen (i.e., in accordance with Theorem 3.1 or Theorem 3.2). In the
notations of Lemma 3.1

m
b= D Bmirawly J=1m, i=01)j-1.  (17)

I=m-—1

From the same Lemma let us derive equalities

wii = Z Buwp 2T, 1=m—i(1)m. (18)
k=m-i-1
Relations (17),(18) will be used as the basis for the solution of system (6).
First of all, Bpm41,4, ¢ = 1(1)m, are found, as it was established in (13).
Elements of the matrix B — uE are found in the following way. We
make replacements in (18) j — j+!,s = i+ 1,l — m — [ and present
equations (17),(18) in the form

m—j - T m-1 m—j
W i—i = (0_1—1,3 = Eg=m_,' ﬁm+l,lwl‘j_;) Bmt1,ms
Jj=i+1(1)m -
m—j—i-1 _ m—j—I| m—{-2 m=j=[=1} .
Wplm1,j—i = (wm—l,j—i “Lik=m-i-l-1 ﬁm-l.kwk,j_.' /ﬁm-l.m-f-h

j=i+l()m-1-2, l=01)m—i—3,
=0(1)m -2,
(19)
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where, as usual, it is assumed that the sum is equal to zero, if the upper
limit is less than the lower one.

The solution is attained stage by stage. At first, the stage i = 0 is
carried out:

"’mfj = 0;;/Bm41m, J=11)m-1,
- J R
Wi = Wl Bnimeic, G = ()m—1-2, 1= 0(1)m - 3.

Meanwhile the k-th diagonals of the matrices (B — pE)*, k = 1(1)m —
1 are calculated consecutively. Therefore, at zero stage we have already
calculated the elements 8;;_1,7 = m + 1(-1)2.

Consider the i-th stage, i = 1(1)m — 2. At the preceding stages, the
values w], are determined. At the i-th stage, the elements wj, should be
calculated, i.e., the elements of (j + ¢)-th diagonal of the matrix (B —
pEY,j = 1(1)m — i — 1. In particular, (i + 1)-th diagonal of the matrix
B — uE is calculated. Therefore, after ¢ stages the first ¢ + 1 diagonals of
the matrix .B — pF, which differs from B in the main diagonal uE only,
are determined.

In the previous sections, equations for calculation of the matrix B — uE
and the vector b,,41, an algorithm of their solution for given matrix A were
obtained with the help of the triangular property of a nilpotent matrix, and
thereto the conditions on A were indicated, in which the nilpotency index
of the matrix B — pE is equal to m. In the meantime, Theorem 3.1 is more
likely to demonstrate us, which way one should not choose the matrix
A. In order to answer the question, how it is be chosen, it is necessary
to proceed with the analysis of equations (1.21). As it has been already
mentioned, equations (1.21) are the orthogonality relations of the vector
v = (kB — A)A*e to the vectors 7; = by41 B!

rive=0, j=11N—-k k=11)N-1, (20)

thereto it was established in Lemma 2.3 that the vectors r;, j = 1(1)ind are
linearly independent. In particular, the vector v; = (B — A)e is orthogonal
to N — 1 vectors r;. Since N > ind , as it is required by Lemma 2.6, v; is
orthogonal at least to ind— 1 linearly independent vectors of the space R,,.
Assuming ind = m, let us show that v, is orthogonal also to the vector ry,,
i.e., to the entire space R,,, which is possible only if v; = 0. Let us prove
some preliminary assertion.

Lemma 3.3. In the DIRK-method the following relations are valid:

2

m=-j A, J! i
b1 B Ne = o - Y ciimighy §=1(1)m, (21)

1=0
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thereto gf is defined in (7) and the coefficients c; ;_; are defined in (10).
Proof. Similarly to (6), write down '
]

> 05

=1

i i
. [P ¥ )
-2 e 2 N == el
I=1

bns1(B — pEY"=iNe

il

I

=1 i=1
J

i gl
9i — Z‘-‘m—rgi-

i=0

i

It remains to check that

bm41 B N e = byny1(B — pE)" I Ae - g + (mj-'l- )Y

applying for this purpose relations (1.23), (7) and (2.11). a
Lemma 3.4. Equality \; = u is sufficient for the relation
b1 B™ (B~ Ae=0

in the DIRK-method. If the vector by, is the adjoint one of height m, this
condition is also necessary.

Proof. Tt follows from (21) for j = 0,1 that
bm1B™ (B — Ae = g} + 1195 — 90
m—1 [ (m=1)! m—1)!
=t (a4 e P )

Assuming i = —=1,7 — { = 2 in (2.19), obtain the relation

A/w)LE, (1/p) = (m+ DIDA/p) + mLE (/)
with which help we find
bm+1B™ (B = A)e = (1/m)(u + e1)u™ LD(1/ ).

By deﬁnition, €11 = —Al. a
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Now we can answer the question, if the values 7;,7 = 1(1)m are at least
to some extent the solutions of equation (1.1) at the nodes £;. Equality
(1.8) implies 5 = & for f; = I€)72,i = 1(1)m,1 = 1(1)L if and only if the
Butcher condition C(L) is-satisfied:

BA*'e = (1/k)A*e, k=1(1)L.
In this case, equa.tioﬁ (1.8) assumes the form
I m
m=E+ Y (ijﬂ;jaf“ - ) ;, j’t’;‘, 1= 1(1)M +1.
k=L41 \ j=1 _
Theorem 3.3. In the complete DIRK-method, condition C(1), i.e.,
E,ﬂ,, =X, i=1(1)m (22)
j=1

holds when the conditions A\; = u, Lg)(p"l) # 0 are satisfied simultaneously
(thereto the first condition is also necessary).

Proof. If both conditions are satisfied, then by virtue of Lemmas 2.2 and
- 3.4 the vector vy = (B—A)e is orthogonal to m linearly independent vectors
7j = bmy1Bi71,5 = 1(1)m, i.e., it is equal to zero, which signifies (22). If
(22) holds, then 8;; = A; and B = p. a

Therefore the desire to obtain Condition C(1) enables us to determine
A1 and, moreover, carry out the correctness control of the calculation of
elements of the matrix B.

Theorem 3.4. In the complete DIRK-method, Condition C(2) is impossi-
ble for any value of u. '

Proof. Notice first of a.ll, that Condition C(2) implies C(1). Therefore it
is sufficient to prove the functionals

Ij = b1 B™ (2B - A)Ae, j=1,2,

not to turn to zero simultaneously, thus the vector v3 = (2B — A)Ae might
not be equal to zero. We have

L = pl(m - 1)L + g™ LY 1/ p)), (23)
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and ’
L ='rml_T)p”"'lL$,f)(1/p) = (m =1 = 20)L0(1/p)).  (24)

It follows from (24), that if st = 0, then I = 0,5 = —Ap(m!)=} £ 0. If
p # 0, then I; = 0 implies the equality I; = m“p’""‘lLs&)(u‘l), by which
I # 0 according to the conditions of the theorem. a
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