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RK-method of advanced accuracy:
new point of view

Yu.l. Kuznetsov

In the paper new concepts of constructicn and analysis of numerical schemes of solving
ODE systems are used for RK-method of advance accuracy. The analysis of compatibility
of equations, the expression for the truncation error are given. The new analitic technics
is based on the combinatorial identities. The constructed theory is closed.

1. Introduction

In the previous papers [1, 2] the new principle of construction and analysis
of numerical schemes of solving ODE systems, leading to some modification
of RK-method, was suggested. Usually an ordinaiy differential equation

dy _

= f(toy). 0<t<T, y(0)= yp.
at

on the interval [t,.t,41]. th41 = 1, + 7. is approximated of the nonlinear
algebraic system '
)= yue + 7B,

(1)

Yn+1 = Yn + Thmg f.
where B = (4;;). i.j = 1(1)m + 1. is the matrix and b; = (3iy...., 3im).
i = 1{1)m + 1. are the vector-rows. n = (N.....p) 0. f = (fi..... ST,

e=(l... DT fi= A& o) G=t+ T i =0(1)m+1. Ao = 0. Apyy =
1. A < Aigr. It was proposed to use only the part of the fundamental
equations. connecting the matrices B. b, 4. A = diag(M..... An )i

by o1 BT AB — M)A e = 0.

(2)
2<7+Ak<ND J=1(1)N - 1.
and ;, l
bm-*—]b”'\k_l( = L;l_)l
(k+ ) (3)

k=1DM=j. j=0(1)M 1.
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where 1/ is the order of approximation and N is the order of weak approx-
imation. The local truncation error /,,; has the form

M41
1n+1 = EM+1T + )

_ 4
Ej =1~ (M4 1)by 4 AMe, “)

but lacking equations are replaced by giving special properties of the cha-
racteristic polvnomials of the matrix B,

Qu(A) = A" =Y g Am, (5)
=1
and the matrix A,
Pu(A)= A" =" pAm. (6)
J=1

It was established that the property of nilpotency of the matrix B is ensur-
ing for constructing the diagonal implicit and singly implicit RK-methods.
~In the present paper the truncated systems (2). (3) are used for construct-
ing advanced accuracy RK-schemes too. The main result of it is the new
technics of analysis, founded on the combinatorial identities, the analysis
of compatibility of RK-schemes and the expression for the local truncation
error as in the multistep methods.

2. Combinatorial identities

The neccesary combinatorial identities are founded on the fact that the
solution of the system

Z (ﬁ) ri=1. k=V-v+1(1)V, (7)

=1

with 17 < 2¢, has the form

(A-)_ k!
i) kNk =Y

Substitution of (8) to (7) brings about the first combinatorial identity

where
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Z(—l}-"(ﬁf) (L) =0 k=verrimy (9)

l' o
=0 J

One may find from this

S ) () e e

i=0

L v-—i-l—l—l) 0-j41-1Y\ _ r+-i)
Z{ 1)( J v4+l-1 N v ) (11)

i=0
i=0()v+!-1;

k
(-1)'(1‘) _ 1 , .

" )_m (=)' (m\ (i1
a;lim R EIEIAPAVEY:

_1yit+j i—m ) ;
( 1) ! + Z (_1)m+l+_}—l__1_____( t )‘ (13)

T (m+1)(mHAY et i+ 1—I\m+1
J=0,1, i > j;

v VT [V = .
S (U () = (14)
= j v—j) |
V—u SV~ V-
Z(—l)-’( . )( J.) = 1. (15)
i=0 _ v

Direct verification helps to establish the validity of one more important
identity

(A-—l)(k+i+1)(‘2k+1) k-l)(k+i) 2k+2)

; k k41 +(f—1 k (k+1 6

_ l:(l.‘— 1) (A‘-}-i) (Aﬁ) i.‘+.i+2) ('21:‘) (16)
BRANE ! K) T i,(k+1 J k)

3. The Characteristic polynomials

It is well-known [3. 4] that stability function R(7) has the form

RiTY= L+ Thyp (k= 78) . (17)
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Using the Kayly-lamilton theorem one may deduce the following represen-
tation [1]:

m : k [
1+, (% - Yo (ri’,—,')

1 - 1”___] r“.Tk '

R(r) = (18)

Now let us apply the Kayly-lamilton theorem to the polynomial Q,,(A) in

the form
m

Z 4 B"—i = g™

=1

Multiplying this equality by b,4; on the left and by Ate, i = 1 (1) M —
m — 1. on the right, find from (3) that

Y - ! k=m
S S k=m0
= (k=70 M

Since for A1 —m < m the number of equations in the system is not sufficient,
let us complement it in the following way:

k
Zﬁ=l, E=M-m+1(1)m.

1=1

The choice of these equations annihilates the coefficients of the higher pow-
ers of the polynomial in the denominator of R(7), which follows from (18).
Admitting the matrix B to be degenerate, we also will assume

qi=0, j=m-=04+1(1)m.

As a whole the system closed in this manner has the form

m—4

3 _% l' k=M-m+1(1)M. 8=0(1)2m—M. (19)
o (k=70 & _
if we count that |
5= 0 for i<O.

Definition 1. The RK-method defined by (2) will be said to be the RK-
method of advanced accuracy.

One should note that S}.'slmn (19) for & = 0 defines an extension of
svstem (3) to negative powers of B3
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bms1B7le=1, bp Be=0, i=2(1)2m- M.
These equalities may be generalized

bms1 B~V (kB = A)A*le = 0,

: (20)
k=1(1)M, j=0(-1)M-2m+w+1,
where w is some non-negative integer, or
; k-1)!
b BIAC1e = B2
* (k + 5)! (21)

j=M-2m+£-1, k=1(1)M.

Solution of system (19), which coincides with system (7) with the replace-
ments v — m — 6, V — M, and r; — jlg;, according to (8), has the
form
a1 () \
4 =(-1Y" 5= J=1(1)m. (22)
7 (5)
Substituting it to expression (18) for the stability function with allowance
for the closure equations, we obtain

Ny, M-m+8(T)
R(r)= . ,
(7) Do M-m4o(T)

where

m-—8 M-k
DypM-mo(T) = ()3[ Z( . ( o )

m—8) k=0 kAM—m+86
M-m48
1 ™ (M -k
Nm—-G,.’\I—m+3(T) = T37 _( )
(rri‘iﬂ) LZ;) Kt \m-46
The restriction
M <2(m-8) (23)
follows from condition
|R(-m)| < 1.

4. The matrix A

Let us define the matrix A. using extension (21) of system (3). Assume
pi=0,g=m-w+1(1)m 0<w<2m- M, ic. let vs assume w-fold
degeneracy of the matrix A. Meanwhile. the number of equations required
for definition of p; reduces correspondingtly. Multiplving equality
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me i t g (24)

1=0 ..

by byny1B?, where j = M — 2m + w (1)M —m — 1, from the left, and by
vector e from the right, obtam

m—w

m — j)! m!
E:W%:f%zﬁﬁ kzM_m+w+1uML (25)

Applvmg system (4) once again and making replacements v — m — w,
VM and rj pi(m— )'/m' find

o
eiy

Ty, ;"'(;‘1')1'“‘(?) ('(,{,))', i=1m. (@)

Theorem 1. The characteristic polynomial of 'the matriz A is -

e = Gy B () (22

m! dM"
N M!dA\M-m

(27)

(AA{—m-HJ(/\ _ l)m—u.')'
For w = D M= v2mv, these are.the Legendre polynomials. **

Theorem 2. The Eucledean algorithm applied to the polynommls PYm(A) =
Pr(A) and Ypm_i(A) = m(z\)/m brmgs about the sequence

k R\ (k+i-u+2) /(2k-u+2)
_ k-
¢k(/\)—Z( 1) ]’\](])( jmw+F1 )/(k—w%—l)’

=0 S
F=m-1(-1)0, u=2m- M,
satisfying recursive relation
2 w 4
Yo(A) =1, $(A) = =5
s -u’

| f@l’k(/\) = (/\ Uk)¢k 1 )‘) = Vﬂ/)k 2( A), . k’ 3 (1) m,

thereto,
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k(b —ud 1) +wlu—2)

Uk k-w(2k—ut2) :

, (k= Dk—w)k—u+1)(k-utw) o 1 (.

Vi = (2k — w)2((2k — )2 — 1) » k=m-1(=1)1,
 om-w _(m=1)m-w)(M-m+w)

Un = M Vm = (M -1)M?

Proof. The valldlty of recursive relation follows from combmatonal 1dent1ty
(16) and may be directly verified. 7 o

Since the values A;, j = 1 (1) m, are the roots of P,(A), it is essential
for them to belong to the interval [0,1]. The analysis of the Sturm system
of the polynomial P,,()) with the combinatorical identities (9), (11), (14)
leads to the following assertion.

Theorem 3. All roots of the polynomial P,,(\) are real, single and lie in
the interval [0,1], i.e.,

0<A; <A <1, j=1(1)m-1.
It follows from Theorem 3 and the second representation in (27) that.
0<w<l, 0<m—w—-(M-m)<1,
These inequlities may be written in the form
max(u - 1,0) < wmin(u,1), ©»=0,1,2. (28)
Because the Vandermond matrix W, |

1A A2 L am-l
1A A2 .. ap!

W = (29)
1 A, AZ L amed '
is nondegenerate one may use the eqalities (3) at j = 0,
bm+1W = C’Th, (30)

where h = diag(1,1/2,..., 1/m), for locating bm41. (If the I-th row and
k-th colomn of matrix A denote by A;, and A,x, then W, = Ak-1e))
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5. The Butcher matrix

So far, the above analysis has shown that the RK-schemes of advanced
accuracy are characterized by the following parameters: 1) M = 2m, w =
0; 2 M =2m-1l,w=0,andw=1;3) M =2m -2, w = 1. By
means of recursive relations of Theorem 2, one can calculate the values Aj,
j = 1 (1) m, which enables us to define uniquely the matrices A and W
(the ascending order A; < AJ+1 j=1(1)m-1,is assumed). Relation (30)
defines the row by, 4. It remains only to determme the Butcher matrix.
To start with this determination, let us note first that conditions (23)

and (28) are compatible, if and only if § assumes the following values:
6=0,1 for M=2m-2,
, o (31)
=0 for M =2m-1,2m.

Therefore, all possible combinations of w and w, consistent with restrictions
(28), correspond to a non-degenerate matrix B (8 = 0) The matrix B may
be degenerate only for v = 2, w = 1.

Lemma 1. The vectorsr; = bpy1 B/, j = M=2m+w+6+1 (1) M—m—w,
are linearly independent.

Proof. It is neceséa,ry to prove the linear independence of m — @ vectors.
Suppose, ad absurdum, that there exists a linear combination

R=Y vr, j=M-2m+w+0+1(1)M-m+w,
J
turning to zero, i.e., R = 0. Multiplying this equality from the right by the
vector A’e, s=0(1)m—-60-1, by means of (3) and (21) obtain

'
s, _ . =18, , 3 _
Ves Sopen s Sogi
Introduce the replacémeut s+j=k—t. wherek=M-m+w+1+s.
Evidently, in this case t=1(1)m -8, k=M -m+w+1(1)m+w-6.

Then
m—6 Ve m—=60
8. 8= — :
Rlxe_szz(k_w UZ( )t!qu_,_o,
t=1

g=M—m+w+1, I.':M—-m+w+](l);\J-f-w—-B.

The matrix of this system is the same as that of system (7), when v = m—86.
V = M + w — 8. hence, it is. non-degenerate. The solution of such system
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is unique: !y, = 0,1e.. v, = 0,1 =1(1) m —#. Therefore, the vectors
riyj=M-2m+w+0+1(1) M —m+w, are linearly independent. O

Corollary 1. If 8 = 1 then the vectors rj. 7 = 1 (1) m. are linearly

dependent. Indced, in this case the value v;, j = 1 (1) m, will be determined
by the nonhomogeneous system

S oy = e s=0()m-1,
j=1 '

where ¥ # 0, 85.m—1 — the Kronecker symbol. The matrix of this system is
nonsingular.

Remark 1. If # = 1 one may deduce by analogy, that the vectors 7.
j =2(1) m, are linearly independent.

Corollary 2. Lemma | yiclds that the non-degenerate matrir I3 is complele.

Lemma 2. In the RK-methods of advanced accuracy, relations (2) still hold
for N = M.

Proof. Consider the case N = M + 1. Represent the left-hand side of (2)
fork+j=M+1.k=m+1 in the form

7 = ('HI + l)b,n_;_le‘U_m AMe — bm+1B}U-m—1Am+l€_

Expressing A™ through equality (6), with the help of (3) we obtain

m

(m—7j) m' fm - J
7 = 0 = — J —_—
By U‘Z( P b

m = m-w) = (m-w) M+1
-1V - —1) _—
M < ( )( ; ) D 1)( j )M—j+l

=0 =0

The first sum on the right-hand side is. evidently. equal to zero. The
second sum may be calculated through identity (12) and is not equal to
zero. Therefore, Z # 0 and N < M + 1. But solvability of relations (12).
(25) vields N = 1. - a

Now we can construct an algorithm of calculating of the matrix 13,
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Theorem 4. For a non-degcnerate matrir B (8 = 0) there hold the equalities
k=1, _ L g | .
BA* e = EA o, k=1(1)m-w, (32)

L.e., the condition C(m — w) is satisfied.

Proof. Relations (2) and (20) can be represented in the form

b1 BV (kB = A)AF e = 0, (33)
j" A - 2m+w+1(1)M—m+w, k=1(1)m-w

L\(‘(‘Oldlng to Lemma 1, it follows thdt
kBA* e —Afe=0, k=1(1)m-w

If w = 0, then the statement of the theorem is proved for this case. Suppose
that w = 1. and let us prove that the condition ('(m)’is impossible. Indeed,
in the contrary it denotes that along with (25) the relation

L (m - __ m!
Z k=) T &
=1

“also holds for k= M —m + 1, i.e..

lz:l( , ()((';):0,

is valid, or the same,

m—1 ) I _ 3 !
Z(_I)J(;\[—{wa+l)( M- ,)=U.
] m—-1-j

J=0
But according to (15), for V = M, v = m — 1, the expression on the left-
hand side of this equality equals 1. Thus. the condition (* (m) should be

omitted. o

Therefore. if w = 0. equalities (32) are transformed into the equality
BW = AWh and define the matrix B uniquely. In accordance with (27)
and (23} there are only two RK-schemes, for which # = w = 0: M = 2m
is the Gaussian scheme and M = 2m — | is the Radau scheme-1. both are
uniquely defined.



RIK-method of advanced accuracy: new point of view 15

The case w = 1 corresponding to degenerate matrix A appears to be
more complicated and requires additional analysis. Consider first a non-
degenerate matrix B.

Theorem 5. For a non-degenerate matriz B (8 = 0) and a degenerate
matriz A (w = 1) holds

! t=1(1)m+ 1. (34)

P = m(M -—m+1)’
Proof. The equation
BW = AWh+ wcm, (35)

where ‘w is some vector, follows from the’ cond1t10n C(m— 1), ie.. (32) at
w = 1, therefore,

B=W'BW = (FT 4 ze0)h = FTh, z=mW='w, . (36)
and
0 1 0
0 1
F=
0 0 1
Pm P2 N

Using the expressions [2]

(m—i)!

g = T"(Pi + Zmoit1)

and (22), (26) we shall obtain

Zm—ipt = (1) (’:; ((mi_ ) -~ (m:*‘)). (37)

]

Because 8 = 0, w = 1,

") fm =1 .
Z 1)r 1 . (’_ l)(m—i+l‘ (ih‘)

Let us take the vector w from equation (33)

1
~w= B, — —AW,,. (39)
m .

It is evident that
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m-=1

W = Z Pm —.j”“oj = Pm-1€1, (40)

J=1
since
’\1 = 0. Pm = 0.

Hence, applying the condition C'(m — 1) one may obtain

m=1

m—j
w= Z p~ Pm-jN e — pp_1Bey. (41)
i=1

Together with (36). (38) this equation gives the expression for the first
column of the matrix B

Be, = —1 nz_:l J (—1)-"-‘---—(72)(]114‘_1)A'""Jf»—
1= mpi—1 \ m—j (t’) )

m my (m—1
Z(-l)j—l (j )E\;_—l )Am_je)
a=1 (J ) ’

M
B 0 O =7V N 1 .
mpm_l(i{) m(’l’f)m m(M —m+1)

Thus, equations (34) are valid for ¢+ = 1 (1) m. But they are valid for
i=m+4 1 as well, since from (30) we have

m

1 ~ Pm—j

Bty = €AW ley = —— :
m+1,1 1 Pm—1 pet J

because using (5) we may get the equality

1 m . m M — J
; -1 _1ym—j+1 1]1.
1,1 M —m 1 1) (Z( 1) (J) (m - j) + )

=0

The expression in the brackets equals to unit with respect to identity (9).
O

There are two RK-schemes satisfying condition (34), which possess the
property # = 0,w = 1: M = 2m—1 - the Radau scheme-2 and M = 2m-2 -
the Lobatto scheme-1. The last possible case, as follows from (28), consists
in the choice w = # = 1. According to (31), here M = 2m — 2. As well
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as in the Lobatto scheme-1, these RK-schemes use the end-points of the
integration step A; = 0, A, = 1 (see the proof of Theorem 1).

As the matrix B is degenerate, one cannot use Theorem 6. Thus, let
us apply relations (2), assuming N = 2m — 2. B

By Lemma 1, there are only m — 1 linearly independent vectors r; =
bmy1B?~1, j = 1 (1) m — 1. These vectors, due to (2) are orthogonal to
m — 1 vectors vg = (kB — A)AF~le, k = 1 (1) m — 1, and the vector vy, is
orthogonal only to the first m — 2 vectors r;.

Let us consider the case of the degenerate matrix V, when § = w = 1,
M = 2m — 2. The equations (2) one may present in the form

riop=0, 5,k=1(1)m-1,
7Yk J () (42)
rjvm =0, j=1(1)m-2,

and so all, where r; = by BI-1, v = (kB — A)AF~Te. With respect to
Corollary 1 and the remark to Lemma 1 :

m-1

T = E Q;T;,

i=1

and a; # 0. Multiplying this equation on the matrix B to right, expressing
B™ by means of the theorem of the Kayly-Hamilton and using of the linear
independence of the vectors r;, j = 2 (1) m, we find

m—1
T = Z Gm—jT;- (43)
5=1
Let us introduce the left and rightl null-spaces of the matrix B,
tB=0, Bs=0. (44)
The vectors z and rj, j =1 (1) m — 1, are the basis in R,.

Lemma 3. The equation
BW = AWh + suT + wel (45)

is valid for RK-scheme with @ =w =1, M = 2m - 2, if s is defined in (44)
and

ule, =0, bpyr1w = 0. (46)
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Proof. Let v,

m=1

Y= Z a;r; + ax,

Jj=1 .
be an arbitrary vector in R,,. Then according to (42), (43), (44)
m-—1
~yBuv, = Z a;riBvy + axBy, =0, k=1(1)m-1.
J=1
The equalities
By, =0, k=1(1)m-1,

follow from arbitrarity of vectors 4. Thus, the vectors vy are orthogonal to
the space of row of the matrix B and, therefore, are belonging to the right
null-space of B. Hence,

BAF-le = %A"e + %s, k=1(1)m-1,
or
m-—1 6k - 1 T
BW = AWh + s Z; Tk T (B~ —A)Woner,. (47)
Supposing .
we get (45). 0

So we dispose of m — 1 equations from Lemma 3 and the condition of
the rank of B being equal to m —1 (8 = 1), used in this case for defining
B. This is not sufficient for unique definition, thus let us specify also the
degeneracy type. For instance, specification of the first row of the matrix
B being equal to zero is consistent. Consider the case b; = 0.

Theorem 6. If 0 =w =1 and M = 2m — 2, equality

BAFle = %Ake, k=1(1)m, (48)

takes place, if and only if the following conditions are satisfied:

1. Matriz B of size m — 1, obtained frorﬁ B by crossing the first row and
the first column out, is non-degenerate.

2. The first row of the matriz B is formed by zeroes.
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Proof. The necessity of Condition 2 is evident: (48) implies for the first
row of the matrix B the following equality

Ww =20

with a non-degenerate Vandermonde matrix. Hence, z = e . In this case
the vectors Byk, k = 2 (1) m, are linearly independent. Indeed in contrary,
els = 0 and hence, zs = 0, what is impossible for 8 = 1.

In order to prove the sufficiency, let us assume that both cond1t10ns of
the theorem are satisfied. It follows from this that z = €7, e's # 0. But
(47) implies

m- 1

__"_
k
k=1

bW =0+ els T+ b1 Womel,

ie.,
m~1

a-f,‘;?‘

k=1
The vectors e] are linearly independent hence 6 =0, k=1 (1) m -1 or
u = 0. This is the condition C(m — 1). So the matrix B has been defined

by (35). As @ = w we have z = 0 from (37) and w = 0. It implies the
condition C(m). o

The RK-scheme with 8 = w = 1, M = 2m — 2, for which condition (48)
is satisfied, will be called the Lobatto scheme-2.

Corollary. In the conditions of Theorem 6 RK-schemes with 6 = w are col-
location ones, i.e., the components of the vector 1 approzimate the solution
at the nodes §; wzth order m (the condition C(m)). In the RK-schemes with
0 =0 and w = 1 the solution at the nodes is approzimated with order m — 1
(the condition C(m — 1)).

Before passing to another form of degeneracy of the matrix B, let us
go back to those already considered.

Theorem 7. In the Radau scheme-1 and both Lobatto schemes, there holds
bm = bm+1.

Proof. For these schemes ),, = 1. In the Radau scheme-1 and the Lobatto
scheme-2 the vectors b,, and b,,4; are calculated actually from the same
equation due to A, = 1 and condition C(m). In the Lobatto scheme-1 the
equation of (35) for the last row by (37) has the form
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bW = eTh + efwel =eTh+m el zel,
by means of the identity (10) with v = m -1, 1 = 0, i = 1 and the
expression (38) one may find that €Tz = 0. It leads to the statement of
the theorem. u}

Theorem 8. The Lobatto -scheme-.? is unique among RK-schemes with con-
ditions C(m —-1),0 =w = 1.

Proof. Let us suppose, ,tha,t'- in the representation (45) u = 0, ie., the
equalities (35), (36) take place. As # = w = 1, then the equations (17),
(24) implay the equality
m!
i = Pj»
(m—g)t ™
and identity z = 0, i.e., w = 0 follows from the equation

- (m =)

YT m!

(i + Zm—ig1), i=1(1)m.

'H:e'ncé, the condition C(m) takes place and the statement of this theorem
is provided by Theorem 6. m}

Theorem 9. RK-scheme with the condition Be,, = 0, i.e., s = ey (the last
column of the matriz B is equal to zero), does not exist among RK-scheme
with=w=1.

P'I.'_oof. Equality b,,;+13 = 0 follows from the orthogonality conditions (42).
Thus Bs = 0, s # 0 and rank B = m — 1, then the row b,,4; belongs to
row-space of matrix B, ‘

bm+1 = PB ’ . (49)
where p is the vector-row. Suggesting Be, = 0 implies the equality
Bm+1,m = 0. However, it is not so. Indeed, from (30)

T -1
Bm+_1,m =e hW™e,,.

Let us calculate this expression. Denote

@A) = Pu(N)/(A= M) =) o M7

.=l

Then
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1 m
Wlem = ——" thm m-je;. (50)
<P"’l(]') j=l

The polynomial (27) with M = 2m — 2,8 = w = 1 has the form

m-1/) j=0 m
hence,
. (m'—2) (2m—2—j)
wm,j=(—1)”(T_’;‘)°‘—, i=0(l)m-1. (51)
m~—1

Thus the identity (11) with v =m — 1,7 = = 1 implies

- Er () -

m-1/ ;=0 1
therefore,
1 1
:Bm-H.m o (pm(l);jwm,m—g
=_l_mz_2(_1)j<m—2)(2m—2—j) 1
m =s 7 m-—1 m-—}
1 = (m—=2\[2m-2-j 1
— Y (-1Y =
=y & (") - e

The last equality is the result of the identity (11) with ¢ = 0, | = -1,
v=m. a

6. Compatibility of equations

Relations (3) determine M (M + 1)/2 equations for m? + 2m unknown pa-
rameters f;;, Aj. It means that for any m and M system (3) is either
under-defined, or over-defined. In the meantime the conclusions concerning
the order of polynomial approximation are implicitly based on the compat-
ibility of this system. Since a class of equations from (3) is not included to
definition of characteristic polynomials, it should be separately analyzed.
Two groups of equations were not considered above



52 Yu.l. Kuznetsov

: k!
m—irk_ _
bm+1B Ae_(m+k+i+1)!’
. : )1
b1 B'A™+he = (m + k) i+k=0(1)M-m-1.

T (m4k+i+ 1)

Let us show that these groups contain no new information. Let us express
B™*+' and A™** through the corresponding Cayley-Hamilton identities.
Both groups are transformed by this to the combinatorial identities

St o

=0
a (7) (a=d)
j_\i/\m—j/) : —
Z(—I)JW——O, z+k—0(1)M—-m—1.
=0 I+l
The first of these identities is system (9) and the second one is the k -th
order difference by index i of the first identity, taken for k = 0, if rewritten
in the form (™) M )
m m) (M—j
2 (- R =0
=0 i+1 )
it implies compatibility of relations (3) for M < 2m.

Let us demonstrate that M = 2m is the maximum admissible order of
accuracy, i.e., for M > 2m system (3) is incompatible. Since for m > 2m
the system of equations (19) should hold at least for k = m + 1 (1)2m +1,
with the account of the coefficients structure on the right-hand side of
equations (19), it proves the validity of equations

m
1 ,
Y Gim—=0, k=m+1(1)2m+1,
— " (k-J)

J_
where ¢o = —1. The matrix of this system is non-degenerate, since it
coincides exactly with the matrix of system (19), where m is replaced with
m + 1. Thus, the coefficients g; might be only zeroes, which contradicts
to representation (22) and the definition of go = —1. Hence, system (3) is
incompatible for M > 2m.

7. Truncation error

Let us calculate the local truncation error, which is determined by (4).
Using the Cayley-Hamilton identity for the matrix A, by means of (3) and
(5) we obtain '
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m-w

1= (M 4 DbppAMe=1- (M +1) Y pibmprAM e
J=1

m—w m-—w

Z(-l)i(”.‘)( ) ML

"g(_l)m_w_j(m_w) (M) M+
j=0 j M-mtwtj+l (f:) .

Eria

I

Applying relation (13), find (for given values of M, w, the sum on the
right-hand side vanishes)

_1\WM-w
EM+1 = ((M)l()—M)a (52)

due to which the expression for the local truncation error has the form

rM+1
My M\
(m) (mew)
It is easily seen from this expression that the m-stage Radau schemes-1
and 2 enclose the true solution from the both sides.(in assumption of a
constant sign of the M + 1-th derivative of y on the segment [t,,t,41]).

The same property is shared by m — 1-th stage Gauss scheme and m-stage
Lobatto scheme.

by = (-1)M-¥ (53)
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