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The algorithm generator ALTROS*

Yu.l. Kuznetsov

The generator of algorithms to calculate a set of Vandermonde and Hahkel
algebraic structures elements is proposed.

1. Generator
call ALTROS(Np, Npd, A, G, B, X, C, P, H, D, N)

Remarks: The Jacobi matrix can be presented in the following form: T =
(ci,bi,a5) or S = (ai-1,b5,a;) or J = (1,b;,9:). The relations DTD™! =
J, D = diag(1,1/ca,...,1/(c2---¢n)), 9 = cit184, © = 1(1)n — 1, hold.
The matrices T, S, J are presented by the arrays (C,B,A4), (B,A), (B,G),
respectively.

Arguments:

N - the order n of the matrix H (and J, P);

X - the nodes of the orthogonality array, X(z), i = 1(1)n; or the nodes of
the Cauchy interpolation;

C - the weights of the orthogonality array, C(i), ¢ = 1(1)n, or subdiagonal
of the Jacobi matrix T'; or a unknown vector in SLAE; or the nodes
of the Cauchy interpolation;

G - the updiagonal of the Jacobi matrix J, G(i), ¢ = 1(1)n; or the value
function vector; or the denominator polynomials coefficients;

A - the updiagonal of the Jacobi matrix S, A(%), ¢ = 1(1)n; or the right-

hand side vector in SLAE; or a function value from X in Cauchy
interpolation;

B - the diagonal of the Jacobi matrix, B(i), i = 1(1)n; or the function
value from C in the Cauchy interpolation;

t

- the array of the moments, H(z), ¢ = 1(1)2n — 1;

o

- the diagonal matrix, D(z), ¢ = 1(1)n; or the numerator polynomials
coefficients;

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.



58

Yu.l. Kuznetsov

P - n x n-matrix: P(i,j), ¢ = 1(1)j, are coefficients of polynomials of
degree j — 1; or P(i,7), 7 = 1(1)n, are elements of the i-th eigenvector
of S; or factorization of the Vandermonde matrix (without identity
diagonal); or the Levner matrix;

Np - a flag of the operation:

Np = 1 - the construction of J:

Npd = 1: input: H(2n — 1); output: A, B, D, P;

Npd = 2: input: A, B (see comment VOSJP); output: A, B;

Npd = 3: input: X, C; output: A, B;

Np = 2 - the construction of P:

Npd = 1: input: H(2n — 1); output: G, B, D, P;

Npd = 2: J input: B, G; output: P;

Npd = 3: 2;, ¢; input: X, C; output: A, B, P;

Np = 3 - the construction of z;, ¢; on S;

input: A, B; output: X, C, P;

Np = 4 — the solution to SLAE (A is input):

Npd = 1: He = a (input: H; output: C);

Npd = 2: Jec.= a (input: B, G; output: C);

Npd = 3: VA = a (input: X; output: A);

Npd = 4: VT A = a (input: X; output: A);

Np = 5 - the matrix inversion:

Npd = 1: V input: X; output: P;

Npd = 2: J input: B, A; output: P;

Np = 6 — the matrix factorization:

Npd = 1: H™! (input: H; output: B, G, D, P); :

Npd = 2: V! (input: X; output: P);

Np = 7 — the interpolation:

Npd = 1: Lagrange (input: X, G, H(1); output: H(2));

Npd = 2: Newton (input: X, G, H(1); output: H(2));

Npd = 3: Cauchy (input: the nodes X, C and the corresponding
function values A, B; output: the coefficients of the polynomials
of the denominator G and of the numerator D with the decrease
of degrees (see (33), (34) for g(z), w(z)));

Npd = 4: Cauchy (input: the nodes X, C and the corresponding
function values A, B, the node of interpolation H(1); output: the
coefficients of the polynomials of the denominator G and of the
numerator D with the decrease of degrees, the function value H(2)’
in the node of interpolation H(1));

Np = 8 - the quadrature of the function g(z) on [A(1),A(2)]:

Npd = 1: Newton—Kotes (input: H, X, G; output: H(1));

Npd = 2: Gauss (input: H, G; output: A(n));
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Npd = 3: Radaux (input: H, G; output: A(n));
Npd = 4: Lobatto (input: H, G; output: A(n));

¢ Np = 10 - the calculation of eigenvalues of S by the Sturm method
(input: A, B; output: X, P);

e Np = 11 ~ the calculation of Hamilton form (input: A, B, 0 <
A(n) = T < 1; output: A, B, D);

e Np = 12 - the conjugate Sturm system: .
Npd = 1: the conjugate system and a complementary matrix
(input: A, B; output: A, B, X, C of the new matrix; according to
(32),a=1,b=10);
Npd = 2: check of conditions (output: the strings).

Remarks: The subroutine ALTROS writes into the file ALTR the data to
be computed and some control data as well:

Np = 3 and Np = 10:

the string ‘The error of Spur = ' mEp;

the string ‘It is not a Jacobi matrix’ if ¢;;1a; < 0;

the string ‘The complex roots’ if the matrix is not a Jacobi one;

the string ‘The muitiple roots’ if the matrix is not a Jacobi one;
Np=T:

o the string ‘N is too great’;
Np = 11:

o the string ‘The condition a(i) < 0 is violated’;
e the string ‘The absolute error u =’ mEp, 'u =’ mEp;

Np=12:

e the string ‘The matrix is not a complementary one’;

o the string ‘The complementary matrix is obtained’.

2. Algorithms

The triple algebraic structure is a set of algebraic objects, connected with
one-to-one relations. The Vandermonde and the Hankel structures, whose
algorithms presented in ALTROS, are more often used.
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The Vandermonde structure. In this structure [2, 4], the Vandermonde
matrix V is the main object:

1 z ... :t:'l‘"1

1 2z ... zg—l
V= . . . ’ (1)

n—1
1 z ... 2,

V=3%",X" ee], where e =(1,...,1), X = diag(z1,...,Zys).
Introduce the node polynomials, whose roots are zi,...,zx, k = 1(1)n:

k k
m(z) = H(Z —z;) = Z ck,k—iﬁi.s k =1(1)n, (2y
=1 i=1 .
ﬂ";k)(zj) = :t;::i’
n-1
¢i(@) = ¢V (@) = 3 Yin-j12’. 3)
i=2

For example, the Vandermonde determinant is

n
VI = II me-1(z).
k=2

If
Yin-1 Y2n-1 -+ Yna-1
v=| ; :
Y10 Y20 - Yno
and ¢ = diag(p1(z1), . .-, ¥n(zn)), then
‘ Vl=9pl (4)

The last row of the matrix ¥ is e = (1,...,1)7, hence eIV -1 = T~ 1.
The polynomials

wi(z)
li(z) = , t=1(1)n 5
@)= 25, =10, )
are called the fundamental Lagrange polynomials. They are defined by the
property li(z;) = dij, 1,7 = 1(1)n, providing their linear independence. The -
entries of the i-th column of the inverse Vandermonde matrix are coefficients
of the polynomial /;(z).
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The interpolational polynomial in the Lagrange form is the following:

P,._l(z) = zn:.fili(z):

i=1

where f; is a number and P,_;(z;) = f;j, 7 = 1(1)n, i.e. the interpolational
polynomial has the given values f; at the nodes z; (for example, the function
values f(z;)). .

Let us introduce a vector

v(z) = i 2/ le;.

i=1
Then the form P,_;(z) = (f, (VT) lv(z)) or
Pya(2) = (V7' f,0(2)) . (6)

is a coefficient representation of the interpolational polynomial.
The identities

n
2% =" 2fli(z) + fknma(z), k=1(1)n,

=1
and the equalities
n
fi =Y fili(=z;), i=1)n,
=1
are hold.
The interpolational polynomial P,_;(z) can be presented in the Newton

form, where the vector f in (4) is changed with the divided differences of
order k:

Alfry.o fraa] = St fen fenl Al Sl ppy o ()

Ths1 — Tk ’
(recurrence definition). Another representation

M1 o
Alftyeoos frrr] =Y (pT“‘)_)

“ (2 ’

k=1(1)n -1, (8)

holds as well.

Theorem 1. The triangle factorization of the Vandermonde matriz can be
presented in the form V = TW, where T = (t;5), W = (wy;), 1,5 = 1(1)n,
are the lower and the upper triangle matrices, respectively, and
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i j—1
O _ N %
Wij q.'-'"' - Z :)
=1 ¥} (:1:1)
Wij = Wi—1,j-1 + TiWi 51, jz2i, 1= 2(1)1’1,

tj; = 11’,‘_1(351').

wy =271, j=11)n, wy;=0, j<iori<O.

In addition,

vi=wlT, (9)
and T~! = (t i) w-1 (w:j)! 4,7 =1(1)n,
* 1 :
il = (J)(:Bl)’ I =1(1)j. (10)
w:j = ¢j_1,j-iy ¢=1(1)j. (11)

Let equation (8) for the interpolational polynomial be presented in the

vector form. If f = (f1,...,fn)T and Z = (21,...,22)7, 2z = A[f1,-.., fi)s
then from (10) we obtain

Z=T7'f, Ppa(s)= w- 2,0(2)) = (2, W To(a),
Pﬂ_l(fn) = sz"k—l(z)l
k=1

i.e., the Newton form of the interpolational polynomial. The recurrence
definition (7) is suitable for the computation of z.
The interpolational polynomial has the coefficient form as well:

n—1
Pai(z) = ) aja? = (a,0(2)).
j=0

If a = (ay,a3,...,an)T and f is the vector of values of P,_1(z) at the nodes
Z1,...,Tn, then
Va=7§. (12)
For solving system (12) with the Vandermonde matrix one can use repre-
sentation (4) or (9) of the inverse matrix, for example.
The following lemma states a better method.

Lemma 1. Let z; = A[f1,..., fi]- Then

Pa-1(z) = mj(2)PY,_,(2) + ':Z;zm 12), §=1(U)n,

where
n—j—1

P9, \(z) = E o) 2% = Alf1,..., fj, Pas(2)]
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and the coefficients “’Elv k =0(1)n —j — 1, are determined by the relations
n—j—1
Z ak+1z —A[fli'-':fjifi]r ‘=j+1(l)n

The identity
P(@) = PE(2)) + (2 — 25)PY; (),

generates an efficient algorithm solving the system with a Vandermohde
matrix. So, if the vector Z = (z1,...,2,)7 is obtained, then the coefficients
of the polynomial P,_;(z) are defined by the algorithm (1}, [4]:

ag.n-.‘i)

= Zn,
a‘().f = Zj+1y
B = B s, k= 0n-j-2,
a'!(’ljlj = “E:flll:
j=n-2(-1)0

(the value a‘(,” ) is introduced as auxiliary one).
In another problem with a Vandermonde matrix we have

vTc =M,

where C = (c3,...,¢,)7 is an unknown weight vector, M = (my,...,m,)T
is the moment vector. In this case the following lemma holds:

Lemma 2. The relations
n
Y @M =m®, E=o0)n-1, i=1(1)n -k,
j:k‘.‘l

(k)

take place, and the values ;" are determined by recursion [1, 4]:

1) = gpln-1),

c_(.,-k-'l) - cg-k)/(ﬂ:j —z), j=n(-1)k+1,
n :
4 <t 3D, hmn i
i=k+1
¢ =¢, j=1n,

when the values mg‘—l),
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m; " = my, = l(l)ﬂ,
m = m*? —zm{Y, 1=k +10n k=10)n-1,
are computed.

Henkel structure. The Hankel structure [4], [6], [7], [10], [11] is deter-
mined by the positive definite Hankel matrix H. It is characterized by a
large set of relations. So,

H=RTDR=VTcV,

where D = diag(dy,...,ds), R = (rij), i,j = 1(1)n, is the upper identity
triangular matrix,

§ = T——, ry: = —_—
% |Hi-1] i |Hi|

V is a Vandermonde matrix (1), C = diag(c1,...,¢s), R.g41 = JR. 4,
k=1(1)n -1,

hh o
=t , (13)
: - On—-6
1 b,
ko
i1 = [[ g
i=1
Another form of this representation is
HP = RTD. (14)

Here the k-th column of the matrix P = (p;f), i,j=01n~-1; P=R},
has the form of the coefficients of the orthogonal polynomial

k-1
Pea(z) =Y pb ', k=1()n,
=0

with unit in a maximum term (in the Hankel structure Pi(z) is not an
interpolational, but orthogonal polynomial). The orthogonal relations are:

(vP)YfevP =D ' (15)

or

) ,
> ciPi_i(2i) Pe-1(zi) = Sudy, k1 =1(1)n,

i=1
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and
- Py(z) =1,

Pi(z) = z— by, (16)
Pi(z) = (z — b;)Pe-1(z) — gr-1Pi-2(2), k=2(1)n,

The roots of the polynomial P,(z), z;, ¢ = 1(1)n, are eigenvalues of the
matrix J:
VPJ = XVP,

X = diag(z1,...,%,), and its eigenvectors are expressed via the values of
polynomials Py(z;).

The polynomials defined in (16) have the Sturm property: the number
of sign change W(z) in the sequence Py(z),...,P,(x) decreases when z
monotonically increases in such a manner, that W(z; —¢) = 1+ W{(z; +¢),
€ > 0 is a small number. As polynomials (12) are computed with the total
factor, we may take P,(z) = 1, but not Py(z) = 1. In such a system with a
Jacobi matrix, the right-hand-side vector is eg. -

The solution to the system TX = F,

b a
| b
e Gp-l
cn  bn
where X = (x1,...,2a)T, F = (f1,.-.,fa)T, is obtained in the following

manner:
Tn = Yy,

Tk = UpTky1 + ‘.IJ),, k=n-1(-1)1,
Qg

= ——— =0
Ug bk + crtip_1 y  Up ’
Jk — cxvp—1
= ——— =0, k=1(1)n.
Vg by + R k1 y Yo » ( )

If |ux| < €, then the next entry in the beginning of column is leading.
The eigenvalues z; are the orthogonality nodes. The weights of orthog-
onality are defined by the relations

1
dn Pp_1(zi)pi(2:i)’
The entries of the matrix J are connected by the relations
b_-; = P::; _P;:...‘p J = l(l)ﬂ:

d; .
g = —z;j", j=11)n-1.

C = i= l(l)ﬂ.
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In another problem, the values z;, ¢;, i = 1(1)n, are given, and it is
required to find entries of the matrix 3,
bl agp
s=|® bk = an
T apay
Gn-1 bn

-

which connect the polynomials gx(z), k = 0(1)n — 1 (ag = 0, a, = 1):

0 =1, arq(z)=(z—b)gk-1(z) — ak-1qx—2(z), k=1(1)n. (18)
The orthogonal conditions in this case have the form
n
> cigk(@)ai(@i) = 6, k=1(1)n. . (19)
i=1

Then, from (18) and (19) we have

by = icimiqg-l(xi)a k= 1(1)n, (20)
n = 1/2
ap = (Zci((:vs — br)gr—1(z:) — Gk—lqk—l(’ﬁi))z) , k=1(1)n-1.

i=1
After the next calculation by, ax, k = 1(1)n — 1, we find the values ax(z;),
i=11n, k=1(1)n-1,

Tj— bk)?k-l(mj) - ak-lqk—x(%')
ag

gk () = ( (21)

Finally, b, is computed by formula (20). The nodes z; are the roots of the
polynomial g,(z) from (21).

This algorithm [18] is stable for n < 50.

Construction of the matrix J by Hankel matrices is also possible [3]. It
follows from (14) and (16) that

k k
D hkiiph =disr, D hkrjorpf =0,
j=0 . j=0

Pi=pha=0, phe1,
Pl = pj:} — bt - 9&—113;_2, j=0(1)k-1.

The coefficients of Py(z) and Py(z) are known first of all, and d;, da, g; are
known as well. Hence we find
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by = Pl _ P2
dp  dr1’
where 1
= hyjnp;, l=k-1Lk
Jj=0
After that the coefficients of the polynomials P, (z) and di.1, are computed.
As gi = dg41/dy, then this recurrence continues.
Now let us consider [9] the generalized eigenvalue problem

SgU = DUX, (22)

for the Hamilton form Sy of the positive (nonnegative) definite Jacobi ma-
trix, where '
B/ a1

sg=| P = , (23)
. o
an-1  Fn
with the conditions B; = ;.1 + a;. Here D = diag(my,...,my), X =
diag(z1,...,Zn), U is the corresponding fundamental matrix.
The transformation from (17) with a; < 0 to (22), (23):

Sy = D'/*$D'2,

is a congruent one.
Let us denote 0; = —a;/mis1/m; >0, i = 1(1)n,

[s7
b2e=—2>0, bp2p=—20,
m

my
then the relations
Gg 1 02_1
Oy=b—-¢, Oi=b—-—-=, i=2(1n—-1, 0=b,—p——
8.?._1 on—l
are valid. Hence follows n 4
-1 " 9n
gw N7 N 24
phya_1—hy (24)
and b,
Eln — On
= 25
# ehn_1— gn-1’ (25)

02=1, g1=b, gr=Dbgr1—ar19k-2 k=2(1)n,
ho=0, hi=1, hg=>behp_1—a}_1hr_z, k=2(1)n.
The choice of & (or p from relation (25)) can be arbitrary from the interval

[0, 9n/hp] (or from the interval [0,95/gn-1]). When the choice is made, we
can find #; and then find m;,
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Miy1 = WH( )

j=1

also, ap = emy, ap = pmy, o = —aij/Mimii, + = 2(1)n—1, and §; =
ai—1 + a;, i = 2(1)n. The value m; must be known.

For the symmetric Jacobi matrix S (17) with the conditions ay > 0,
k = 1(1)n — 1, with eigenvalues

T <Tp-1<...<23< T (46)

L3

and the system of polynomials gx(z) (18), there is a problem of the conjugate
Sturm system. For the sequence

a1(z:), - -, gn(i) (27)

with ordering of (26) there are ¢ — 1 sign changes.
Let us define [5, 8] the polynomials ¢¥(y) by the relatlons

_ pial=) L,
q',il(yl) = PIQI(‘L'I)’ ‘:l = 1(1)"': (28)

where p? = ¢; are the orthogonality weights of the polynomials gx(z), p; > 0.

Theorem 2. The polynomials ¢! (z) of order i —1 are orthogonal ones with
the weights ¢ = (p})?,

d=ag(@), Y d=1, (29)
=1

at the nodes y;, l=1(1)n.

Lemma 3. The polynomial ¢} (z), i = 1(1)n, has the degree (i — 1) if and
only if the relations

= ,n—-!q'(zk) _ n 3 o
E ‘Py(yz)‘b("’l) =0, I=k+1()n, k=3(1) L (30)

or

m(xk) - k g'(xk) Y — Yj _ 3 _
a(z1) q,-(ml)j=g# —— l=k+1(1)n, k=1(1)n -1, (31)

are valid.



The algorithm generator ALTROS 69

Theorem 3. Under the ordering of (26), the nodes y;, where

_ P2a(z2)
praq(z1)
are ordered similarly, i.e., yp < yn—1<...<y2 < y1-

+b, a>0, I=1(1)n (32)

Theorem 4. The fundamental matriz O of the matriz S is the left funda-
mental matriz of the matriz S¢: SO =0X, 08 =YO.

The polynomial w(z) = —x,(z) is connected with a nonsingular Hankel
matrix H through its mutually distinct roots z;, ¢ = 1(1)n. Let X =
{z1...,2,}. In addition, let us consider the sets ¥, Z of the mutually
distinct nodes ¥;, z;, ¢ = 1(1)n, with the condition

wy) #0, w(z)#0, i=1(1)n.
Also, let us consider the polynomials

@), W(), D), @), ¥¥), ),
S0
m(z;) =0, =W (y;)=0, =P(z)=0, j=11)n,
(7 (z) = mn(z), ¢ (z) = pi(z), etc.).
The Vandermonde matrix V(z) = V, V(y), V(z) and ¥(z) = ¥, ¥(y),
¥(z), ¢(z) = ¢, ¢(y), ¢(z) correspond to the sets X, Y, Z.

For example, ¢(y) = diag(¢l" (11), -, % (1)), V(W) ¥(¥) = (a)- So,
the Levner matrix L = T (y) H¥(z) has the form

51— 3 — iy
n-zn = %1—zZ
L=| - :
8, — 1) 8p — 1
n=21  Yn—7Zn
where
) R (C)]
T wly) 7 w(z)’

g(z) is a polynomial of the degree n — 1. The polynomials g(z), w(z) =
—mn(x) are mutually distinct.

Let the sets (yi, 3:), (2i,%:), ¢ = 1{1)n, be given. In the Cauchy interpola-
tion, the ration function r(z) = g(z)/w(z), such that r(y;) = s;, r(z) = ¢;,
i = 1(1)n, can be calculated in the followisg form:

Theorem 5 (M. Fidler). Let the Levner matriz L be nonsingular and ¢ is
a real number, such thai
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81— 11 31—ty (®)
ot P —— T
y— Y1 — 2n @1()
T [,
we(x) L[| sn—ta =t ) | (33)
Un — 21 Yn—2n
1 —¢ th—¢  7Y(x)
81— 1 81 —tn ()
—_— e 8 x
V1i— 2 -z A (@)
T | cerereririiirii e
g(z) = _E-;l‘ PI— 8p =ty ’ (34)
an‘Psy) (3)
Yn — 21 Yn — 2n
t1—¢ ... tha—¢ —¢x¥(2)

and we(y:), we(z) do not vanish. Then g¢(z)/we(z) is the ration function
r(z) of the Caushy interpolation. In addition, the polynomials g¢(z), we(x)
are mutually distinct ones, w(z) = —mn(x). The degree of the polynomial
g¢(z) is not greater than n.
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