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On the domain decomposition method
for parabolic problems

Yu.M. Laevsky

The paper deals with studying the domain decomposition algorithm with overlapping
subdomains. This algorithm is based on the splitting method and uses the additive
presentation of some bilinear form. This method was described in [1] for two subdomains.
In our consideration we formulate the decomposition algorithm for an arbitrary number
of subdomains and give the error estimation in L;-norm. The obtaning of this estimation
is based on the analysis of the greed Green function of the implicit scheme operator,
which is given in [2]. The method formulation is given in projection form with the finite.
element approximation. The approximate computation of the mass matrix is important
in this paper. The lumping operators technique [3] is used for this purpose. The results
of this investigation were published earlier in Russian in [4]. For briefness we give some
statements without proofs, which may be found in [4].

1. Differential problem and discretization

Let Q be a bounded polytop in R™ and B is some arbitrary subdomain of
Q. In the space H'(2) x H'(Q) we consider one-parametric families of the
bilinear forms

ap(t;u v)_/ 2 Aij(t, & ‘9“ ﬁd- (1)
1,7=1

where ¢ € [to,1,] is a real parameter. For the functions A;(t,Z) we assume
that bilinear form (1.1) is symmetric, continuous and coercive, i.e., Vu,v €
H'(Q) the inequalities

IA

| a(t;u,v) | ao || ullgByllvllar sy (1.2)

ap(t;u,u) > a5|u|}p(B) (r.3)

are valid, where ag and a; are positive numbers, which are independent
of t. Here |u|g(g) = (f5|Vu|?dZ)!/? is a semi-norm in the space H'(B).
Assumptions on smoothness of the functions A;;(t,Z) will be given in what
follows. When B =  we will use notation a(Z; u,v) = aq(f; u,v). Then we



42 Yu.M. Laeuvsky

introduce the family of the continues on ¢ and continues in L;(Q) linear
functionals (f(t),u), where (,) is the scalar product in Ly(), f : [to,2.] =
Ly(R). Henceforth, by u(t) we denote the value of the function u : [tp,t.] —
X, which is the element of some Banach space X, and 9¥(t) means a strong
limit in X (if such limit exists) of the elements [u(t)], = (u(t+ 1) - u(t))/r
for 7 — 0.

Now we will formulate the parabolic Neumann problem, for which we
will construct the domain decomposition algorithm [5]. Let up € Ly(Q)
and f € Lg((to,t i H™ 1(&'Z)) It s necessary to find the function u €
La((to,t.); H(R)), such that ¢ € Ly((to,.); H-1(Q)) and Yv € HY(Q)
the following equalities are va.hd

(%;i(t),v)Jra(t:u(t),v) (f(t),v), te€(to,ta], (1.4)
(u(to),v) = (uo,v). (1.5)

Let 7; be a regular set of m-simplexes with inverse assumption” [6], For
set 7, we will introduce the finite-dimensional space V, with the piecewise
linear basis {@i(Z)}ier, where ¢;(Z;) = i, ¢,j € I, Z; is a set of all differ-
ent vertesies of the set 7;. Then let II : C(Q) — V} be an interpolating
operator defined by the formula IIyu(Z) = 3, u(Z:)wi(Z).

In accordance with paper [3] we introduce the lumping operator Py,
in the space V}, for which the condition of the approximation relative to
the scalar product in Ly(2) is valid. Let us consider the bilinear form

dh(uﬁv) = (Ph.n"vPh.nv)a u,v € Vh- (1.6)
As shown in [3], there exist numbers dy and d; independent of k, such that

| dh(u!v) | < do ” u ”Lz(ﬂ)” v ”Lg(n)s (17)
da(u,u) 2 di|lu i}, (1.8)

for any u,v € V.

Let us introduce some inequalities, which will be used futher. Let
u € W2(Q) where p > m/2. Then according to inclusion of W2(Q) into
c(Q) the function ITyu € V}, is defined. In accordance with [3] for bilinear
form (1.6) the following estimation of approximation is valid:

| (uyv) = da(lau,v) | < ™ {| w |gran| |

ch (1.9)
+ B2+ meas(¥) % | u lwaqanll © lzyan}y
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where k,1=0,1, = supp(v), number ¢ does not depend on h, u, v and
Y. Let us give two inequalities for functions from the space V;. In the
first one there is the so-called "inverse inequality” [6]:

lvlm@) < ™ v @), (1.10)

where Q' = Ueef.e 7, C Ty, number ¢ does not depend on A, u and
. And then there is the well-known type of the trace theorem inverse
inequality:

70 gy < ™2 v | gagan, (1.11)
where T is the boundary of the polytop €', v is a trace operator.

Finally, let us introduce notations for two norms, which will be used
further:

lull@eny = [||“||i,((cr,c");m(n))‘|‘h2||“||i,((:r,:");wg(n))]l/2, (1.12)
lelly = (el epmsy + P IulEqo.epws@pl/* (1:13)

2. Properties of the subdomains system

Let us introduce some notions, which will be used for formulation and
analysis of the domain decomposition algorithm. Let {Q*)}i_, be the
system of some opened sets in R™. We will use the following notations

! .
DED = | J o, G®d = @\ Dk,

n=k

Then let us denote

dist(Q', Q") = -
U@, = ol (2= Flm,
where Q' and Q" are arbitrary sets from R™, | |,, is the Euqlidian norm
in R™,

Definition 2.1. The system of the subdomains {Q*)}1_. will be called p-
regular system if the following conditions are valid:

s

U Q) = min _dist(G1F), gLy > 5 5 0.

Pt =1,...,8~

Definition 2.2. The system of the subdomains {Q*M};_, will be called

(p, h) — regular system if this system is p-reqular and for any k there ezists
set Tp . C Ty, such that Qk) = UeeTM e.
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Remark 2.1. The distance to empty set will be assumed positive.

Now we will introduce some sets, which will be used further, and will
formulate some properties of these sets without proofs. The appropriate
proofs are given in paper [4]. Let

BM =9, BR.= QR ypli-D k=2, s, (2.1)
o = @\ B®, k=1,...,5-1. (2.2)
Lemma 2.1. The equalities
o nald =0, k#£1, (2.3)
Uker 057 = DO (24)

are valid.

Now let us define the following sets:

k) = k) k=1,...,s, (2.5)
BI® = -1k g, (2.6)
ik = Ut B ks 1, U=k, (27)

The properties of the sets Q('*) are given in the following statment.

Lemma 2.2. The inclusions

Qk) ¢ QU-1k ¢ ¢ Q(k-k), k<l (2.8)
and the equalities

Q“‘k) n Q(I’n) = @, l 2 21 k,n S l? k # n, {29)

UL=1 Q%) = pluD) (2.10)

are valid,

Now we will consider the properties of the sets Bél’k).

Lemma 2.3. The following equalities hold:

BYYABY™ = 0,123, k<l k#n, (211)
B[()l,k) n Bt(,"‘k) = 0, I,n>2, k<ln, l#n, (2.12)
Bk = g, Ln>2, k<i<n, (2.13)

-1
UBM™® = BY, 1>2 (2.14)
k=1
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Corollary 2.1. The following inclusions are valid:
QR C L) k< s - 1.
Let us introduce the sets

B = |J By, k<i<s—1.
n=I+1

The statement holds.

Lemma 2.4. The following equalities are valid:

BUk) = QUK A pU+1s) k<1< s -1,
B Ap+Ll) =@ k<l<s—1.

Corollary 2.2. The equalities
Q(s%) n glkk)

ws k S § - ]-s
ek y gkl = ) E<s—1

hold.

From these statements the main result of this section follows.

45

(2.15)

(2.16)

(2.17)
(2.18)

(2.19)
(2.20)

Theorem 2.1. Let {Q®}2_  be (p,h)-reqular system. Then the positive
number v ezists and does not depend on p and h, and the sets of the m-
simplezes 7;5“ may be found, such that for h < vp/2 the following inequali-

ties hold

G(k+1,8) C D) C D(l,k), E<s-—1,
dist(D®), Ry > wp/2, k< s -1,

dist(GF), Glk+1:2))
dist(D®, BU¥) n Gy

2 vp, kss_l’
> vpf2, k<l<s—-1,

(2.21)
(2.22)
(2.23)
(2.24)

where D(*) is the set of the inner points of the set |J eT® & G = Q\ D),
e€n

In conclusion of this section let us give one simple equality for charac-
teristic functions of some sets. Let ' and ©” be arbitrary sets from R™.

Then the following equality is valid:

xauar(Z) = xa (%) + xar(Z) — xanar(Z).

(2.25)
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3. Additive scheme and error equations

First of all let us introduce some bilinear forms in the space H(Q)x H'(Q)
according to the sets from Section 2 . In accordance with notation (1.1)
and formulas (2.1), (2.2), (2.5)-(2.7), (2.16) we will denote

a®)(tiu,v) = aqun(tiu,v),
aék)(t; uv) = angk)(t; u,v),
(k)¢5 u, = a tiu,v), k<I,
a“" N (t5 u,v) ek ( )y k< 3.1)
VRNt u,v) = agm(tiu,v), k>2,
bg’k)(t; u,v) = aau,k)(i; u,v), k<,
0
bRt u,v) = agum(tiuv), k<UL,

where {Q(¥)}s_ is (p,h)-regular system. In accordance with (1.3) these
bilinear forms are non-negative.

Now let us formulate the difference Neumann problem. Let N be some
integer number, 7 = (t. —to)/N, t, =to+n7r, n=1,...,N. It is necessary
to find two two-parametric sequences of the functions

{un+k/’1 ﬁn+kf’| n =0!""N - 1’ k = 1"“’8}

such that untk/s, gntkle ¢ v, and Wontk/s) gn+k/e ¢ Y, the following
equalities are valid:

dh(un+1/a _— ,vn+1/l) + Ta(l)(tﬂ+1;un+1/a’ vn+1/a) =0, (32)

k=1
da(i ntkfs _ (k= 1)/a n+k/a —r Zb(k l) u“H/’, 6n+k/a) =0, (3.3)

=1
dh(1t“+k/" - ﬁn+k/a‘ vn+k/a) + Ta(k)(i"“; u”+k/‘, vn-l-k/s) 5 )
4
- T(fn.k‘vn-l-k/a)’ (
where k= 2,...,8 M =0, b€a=1 A= fllgn )
#? = My ug. (3.5)

For the correct definition of the pight-hand side of equality (3.5) we will
suppose that up € W2(Q), p > m/2, which ensures the Inclusion of W2(Q)
into C'(Q). Scheme (3.2)-(3.4) requires to inverse matrices anly in aubdo-
mains (steps (3.2),(3.4)) and step (3.3) has explicit realization. For further
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* consideration we will give some other form of the scheme. Let us assume
§™tk/s = yn+k/s and sum up equalities (3.3) and (3.4). As a result we will
obtain for k& > 2

dh(un+kfs - un+(k—l)/a’ vu-{-k/a) + Ta(k)(tn+1; un+k/a, .Un+k/a)

(3.6)
~-T E,’:ll bgk'”(tu+l;uﬂ+1fﬂ’ vn-{-k/a) = 7(fmk, vn+k/s)_

Let u(t) be a solution to problem (1.4), (1.5). We assume that the
following conditions hold:
Xij € C([to, t.]; C3(Q)), u € C([to, tu]; W (),

(3.7)
du/dt € Ly((to, t.); W(R)), d*u/dt? € Ly(Qy),

where Q; = (to,t.) X Q. Then let u™+*/* be a solution to (3.2), (3.6).
According to (3.7), the function II,u(t,41) exists and, henceforth, we may
introduce the sequence:

E"+k/8 = ’an‘k/’ - Hhu(tn-i-l) + Trn+k/8s k= L...,s, (38)

such that ¢+k/s pntk/s ¢ V, and identities hold: r™(z) = #"*1(z) =
0. Then " = u™ — Mu(t,), and according to (3.5), £2 = 0. From the
differential equation (1.4) and difference equations (3.2), (3.6) we obtain
the error equations in the following form:

dh(EnH/a _ En, vn+1/a) + Ta(l)(tn“;{""'l/’, ,vﬂ+l/s)

(3.9)
= .rgn.l(vn-l-l/s)

dh(£n+kfa _ gﬂ-i—(k-l)/s, vn+kfs) + Ta(k)(tn+l;€n+klas vﬂ.+k[s)
(3.10)
-7 Elk;ll b.()k")(tn-{.l : £n+lfn, ,vn+k/a) - Tgn,k(,vn+k/3),

where k = 2,...,s. The functionals g"*(v) are defined by the equalities:

g™ (v) = du(r™2,0) + aD(tpga; 12, 0) + 5 (0), (3.11)

g“’k(v) = dh(rn+k/.s - Tn+(k—l)/8, v) + Tﬂ(k)(tn,H; rn+k/a, v) 3.12)
— SR B (g e 0) 4 g (), k= 2,81,

s—1

gn.s(v) — —dh(r""'("_“/", U) _r zb(()"k)(tn-pl; Tn+k/a’,v) + gn,s(v), (313)
k=1



48 Yu. M. Laevsky

where the functionals §™*(v) have the form:

g (v) = —dn(@afu(t)lr, v) — 0l (tpr; Maultnsr), ),
W) = —al (tngr; Tht(tng1),v), k=2,...,8—1,

g™ (v) (%(tns1),v) + altntr; u(tnt1),v)

~ ) (tn1: ht(tnsn), ).

For obtaining these formulas we used the following additive presentation:

k-1
z bg”‘)(t; w,v) = b8 (8w, v), (3.14)

=1

where w is an arbitrary function from the space H(Q). Presentation
(3.15) follows from equalities (2.11), (2.14) of Lemma 2.3, property of the
characteristic functions (2.25) and expressions (3.1). From equalities (2.1),
(2.2) and (3.15) we obtain

aV(t;w,v) = ac(,l)(t; w,v)

(3.15)
a®(t; w,v) - Ef__ll b(k 2 (t;w,v) = agk)('t;ur,v), k>2.

Then equalities (3.14) follow from (3.16). Let
- 0 Ou
2(t) = —UZ=1 Tm(f\ﬁg;)(ﬂ-

Consider the sequence of the functions w™ = [u(t,)]r + 2(tn41). According
to smoothness conditions (3.7), w™ € WPZ(Q). Then the function II,w™
exists and, henceforth, the functions

f,n+k/s - 1‘"+k/s _ thn € Vh (3.16)

may be defined. Now we will rewrite expressions (3.11)-(3.13), using func-
tions (3.17) and the Green formula

ag? (1 (1), v) = 0§(t;) 4 (xggr (1), v), (3.17)
where

o9 Ou
(tiv) = /an“" I (t)vdo, (3.18)
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Z /\,ja cos('n( ), 77), (3.19)

t,7=1

6n(‘°l

7(k), 7 are the unit vectors of the external normal to Qg‘) and of the
coordinate j-axis. As a result we will obtain

g™k (v) = g (v) + gi*(v), k=1,...,s-1 (3.20)

The functionals g;" (v) are given by the equalities

grl () = da(FmHYo )+ TaW (g FHY2 0) — 0™ (v),
g (w) = dp(Fntkle — it D/e gy 4 praB) (tn g 7R, ) (3.21)
— IS 6 (b 42, 0) — 0™ (),
k=2,...,8—1,
where
o™l (v) = 05 (tas1;v) — (Xgu Prullaz(tnr), Phut),
o™k(v) = a{‘:)k)(tn+1;”)+(Xngk)Ph,unhz(tn-H)aPh.#”)a (3.22)
k=2,...,s—-1,

Py, is a lamping operator. Here we used the equality G = Q\ Q(l)
which follows from (2.1), (2.2) and the evident equality D(+1) = Qm The
functionals gj (v) have form

g;"k(v) = a"‘k('v) + ﬁ“'k(v) + r’y"""(’u), k=1,...,8s-1, (3.23)

where, according to (3.14), the functionals a™*(v), f™*(v) and y™¥(v) are
given by formulas

a™*(v) = (g Paullaz(tatr)s Phuv) = (X 2(tat1),0)s
prk(v) = aék}(tnﬂ; u(tns1) — Mpu(tngr), ), (3.24)
’Yn’k('ﬂ) = agk)(in.g.l;ﬂhwn, ‘U).

Let us consider the functional ¢"*(v). From Lemma 2.1 and property (2.25)
the additive presentation

s
a(tns13 U(tns1),0) = 3 007 (tngri w(tngr), ) (3.25)
k=1
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follows. Using equalities (3.18), (3.22), (3.24) and (3.25) the third formula
from equality (3.14) may be written in the form
§*(0) = (F(tar1),0) ¥ da(Inz(tnsr), ) + ™ (v)
+ L1 (6™ (v) — a™k(v)).

Then let us substitute equalities (3.17) and '(3.26) into the last formula
from equality (3.14) with using formula (3.15) for k = s. As a result we
have

(3.26)

g™ (v) = g7 (v) + g;"’(v'), (3.27)
where
n,s = —d "n+(s—1)/a,v _ 8:-1 b(-’vk) th ;;.n+k/s’v
9" (v) w(F )= T ko1 b0 (tn ) (3.28)

- izl o™k (v),

9:°(v) = a™(v) - i) a™(v) + B (v) + Ty™*(v),

and the functionals a™*(v), #™*(v) and ¥™*(v) are given by the formulas

a™(v) = (%(tr&l ), v) = dn(Ip[u(tns1))r, v),
B*(0) = g (tari u(tasr) = Mat(tng),v), (3.29)
Y3 (v) = —b)(tyyy; Mpw™, v).
In further consideration we will use the following equality:
r k-1 . i r-1 r i
S b Gww =Y Y 0P (Gur ), r>2,  (3.30)
k=2 I=1 k=1l=k+1

which holds for arbitrary sequences {uk},’c;l1 and {vk}i;i. Then in ac-

cordance with formula (2.16), equality (2.12) of Lemma 2.3 and property
(2.25) the following equality holds:

s
Z b5 (85 up, vi) = bR (15 Uk, Vk)-
I=k+41

From this formula and from (3.31) for r = s, up = #"+*/3 and v, = v we
have

s—1 k-1 i

Z > b8 (tagr; 772, v)

k=2 I=L_1 (3'31)

= Y [t yy; 772 0) = B (8005 772, 0)),
k=1
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Let us sum up equalities (3.21) over k from 1 to s — 1 and for obtaining
result. add (3.28). Using (3.32) and Corollary 2.2 for ! = k we will obtain
the following presentation of the functional g7**(v):

s—1
g1 (v) = Z[ra(‘"k)(th; Frkls 4) — g;"k(v)]. (3.32)
k=1
lLet us define the functions #"t*¥/? from the following conditions: Vv € V},
o7 (w) = Tal B (b 7T 0), k=1,...,8-1, (3.33)

and according to (3.33), ¢7"*(v) = 0. It means that from formulas (3.20),
(3.27), (3.33) and (3.34) we obtain -
g™k () = grR(v) 4 rale Bty R ), k=181,

| (3.34)
g (v) = g3°(v),

1

where the functionals g’;'k(v) are given by equalities (3.23) and (3.29).
Therefore, we have comletely defined the right-hand side of error equations
(3.9), (3.10). At first we will estimate H 1(Q(**)).semi-norms of the func-
tions #*t*/* to continue the account of error estimation analysis To this
question we will devote the separate section.

4. Estimation of auxiliary greed functions

The functions 7"t/ are the solutions of equations (3.34). Let us modify
this system using the functionals

1
§™(v) = Y [o7*(v) = P (ty; 7 0)], 1< 8- 1
k=1

Then system (3.34) is equivalent to the problem

§"'(v)=0, veV, I<s-1 (4.1)
From equality (3.21), presentation (2.16), Corollary 2.2, equality (3.31) for
r = | and property (2.25) it follows

]
§M(v) = da(F™H,0) + ) bR (g P 0) - 5 (), (42)
k=1
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where &™H(v) = Y4 _; 0™*(v). Lemma 1.1 and the Neumann condition give
the equalities '

(k) Ju O
):ao (t;v) = /a " am(t)ﬂd /8 o Bactvder

Here %‘; is conormal derivative over external normal to D). From these
equalities and formulas (3.19), (3.22) the presentation of the functional
g™ (v), which we will use further, follows. We have

5™l (v) = 57" (v) + 63 (v), (4.3)
where
-nl() _ / 8 (t )‘Ud(T (44)
YT fgan Ang YT '
a2 (0) = —(xgun Prullhz(tns1), Puuv)- (4.5)

Now we will introduce vector-matrix notations, which are more con-
vinient for further consideration. Let £ be the Euclidian vector space
corresponding to some order of the set [ and (), || Il are scalar prod-
uct and norm in the space £. Then let p? = di(i, i), t € I, 7* and
&% are vectors with components p;#"+¥/5(;) and &™*(¢;)/p;. Let Al
be a square matrix with elements 6"*)(t,11504,¢;)/pipj, k <1< s— 1.
(Since all consideration will be conduct for only one time step we will not
use index n). From symmetry and non-negativity of bilinear forms (3.1)
the similar properties for matrix A(**) follow. Then for eigenvalues we
will use the following well-known condition: A(A"F)) € [0,Ao/h?], where
number Ao does not depend on h and 7. Moreover, we will use matrix
A¥) = E 4 rAKkK) k< s -1, where E is the identity operator in £. In
vector-matrix notations problem (4.1), (4.2) has the form:

AR = gl (4.6)
-1

AP = gty AP r=2 s -1 (4.7)
k=1

Let us introduce some additional notations. Let B C . Then Ig = {i €
I\z; € B}. If i is some vector from &£ with the components u;, then up is
the vector with the components up; = u; if i € I and up; = 0if i € Ip.
Now we will formulate the statement, which is a foundation of all following

considerations. In some other form this result was obtained by Kuznetsov
in [2].
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Lemma 4.1. Let B, B' B" be arbitrary subdomains from Q and the fol-
lowing condition holds:

dist(B’, B") > po > 0. (4.8)

Let A be a non-negative matriz with the elements ap(t; vi, @;)/pipi, Ar =
E + 7A and g is an arbitrary vector from £. Besides, the following inequal-
ities are valid:

Po :
2’12 S 1'/\0 S (m) 3 (49)

where € is an arbitrary positive number. Then for solution of the problem

A,u = ggn the estimation

llzp || < eligsn|| (4.10)
is valid.
Now for solution of system (4.6), (4.7) the following result holds.

Lemma 4.2. If the condition 2h? < T)Ap holds, then for solution of problem
(4.6), (4.7) the estimation

i
7] <Y wiFe, 1<s-1 (4.11)
k=1

-is valid, where k = 2h~1\/TX,.

The proofs of Lemmas 4.1, 4.2 are presented in [4].
Now we will estimate the norms of the vectors #. In accordance with
presentation (4.3)-(4.5) the equality

&' =Gk (4.12)

is valid. Let us consider the sequence of the sets {D(”)};c;l1 and the param-
eter v, which are defined by Theorem 2.1. We will estimate the norms of
the vectors Fb( )y by induction over [ from 1 to s—1. For [ = 1 we will apply
Lemma 4.1 to equation (4.6), which according to (4.12) may be rewritten
in the form

AW = 5L, (4.13)
with the following notations: B = Bl B’ = D) B = GO} py =
vp/2. Then in accordance with inequality (2.22 ) from Theorem 2.1 condi-

tion (4.8) of Lemma 4.1 holds. Henceforth, for any ¢ > 0 from inequalities
(4.9) estimation (4.10) follows. In our notations this estimation has form

17l < ella']l. (4.14)
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Let us assume that for some sequence of numbers ¢, > 0, &k < 1 —1 the
inequalities

k
7l < & D 11871 (4.15)
r=1

are valid. The numbers &; will be defined later. Let us introduce the
vectors 7% k < I, which are solutions of the following greed problems:

ADFE = _rAUREE <, (4.16)
AL = 5 ' (4.17)

In accordance with equation (4.7) the following presentation holds:

1
A=k (4.18)
k=1
Then the evident equality #* = 7 jfj(k) + F'Ci;(,‘) is valid, where G(*) = G(k) \

(G®) n D¥), From this equality it follows that solution of system (4.16)
may be written in the form

ik = FE gk (4.19)
where the vectors Fi’k and 'T-{‘.'k are solutions of the following problems:
ADFE = _r ARk k< T-1, (420
ADRE = —r Atk R <I-1. (4.21)
According to assumption (4.15) the estimation
1 k
_lLk _r
71l < Zn‘-’ek;ua I, k<i-1 (4.22)

is valid. Let us consider equation (4.21). Let gh* = rAlMI7k . Since the

inequality A" £ 0 (elements of the matrix A(LK)) is equivalent to the
i,

condition ¢, j € Igux), then the following equality holds:

— _Lk
Q‘l'k = dpik): (4.23)

As it is easy to see, G) N Q is an opened set and, using the structure of
the matrix A(4¥), we obtain the equality

- ~k
3" = 33 (4.24)
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Let us introduce the set B(:¥) = B(K) 0 Gk). Since G = G®), then
according to (4.23), (4.24) system (4.21) may be rewritten in the form

AR, = Gaum, k<I-1. (4.25)

Let B = B, B’ = pO), B" = Btk) and py = vp/2. Then from in-
equality (2.24) of Theorem 2.1 the inequality (4.8) follows. From Lemma
4.1 and according to estimation of eigevalues of the matrix At¥  we will
obtain the following estimation:

=Lk
17, poll <

Py Dt n 27, k<i-1.

The right-hand side of this inequality may be estimated by Lemma 4.2.
We have

k
175 peoll < < Lo Yo, k<i-1,
r=1
From this estimation, presentation (4.19) and inequality (4.22) the estima-

tion

Il < 2 ~’Z(ek+nk e)otll, k<i-1 (4.26)

r=1

follows. The estimation of the vector r-(,) may be obtained from Lemma
4.1 similarly inequality (4.14). We have

1750l < elia]l. (4.27)

In accordance with presentation (4.18) we will sum up estimations (4.26)
over k from 1 to I —1 and the result sum with estimation (4.27). After
simple transformations we will obtain

IS < ella’]| + n’z(zs, )n«r*n (4.28)
k=1 \r=k
Let
epmrit=le pga=1, (4.29)

Then 1t is easy to obtain the estimation

ki K
" e ) <o [ o + —mH)
(Z;s )'E:‘('c”--l-"m—l‘|c )
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According to (4.9), k > V8, =& 2o < (8+ V8)/1, K, T < 8/7 and the right-
hand side of the latter inequality may be estimated by 4¢;. Therefore, from
inequality (4.28) the estimation

175 < e:Z ll5]. (4.30)

follows. In accordance with (4.14), (4.15) and (4.30) the correctness of this
estimation is valid for an arbitrary [ =1,...,5— 1.

Now we will estimate the norms ||Er’°||. Denote Ixy = Igguky, Ik2 =
Ik and

o ,

= 1 tn id ) , 4.31

o= 2 (67 [, Gt (431)

Tz = O (7 (X Prullaz(tnsr)s Ppi))?. (4.32)
i€l 2

According to (4.3)-(4.5), the inequality
6511 < 2(Jk1 + Jr2) (4.33)

is valid. The first term in the right-hand side of this inequality we will
estimate using the Cauchy-Buniakovsky inequality, inequality (1.11), con-
dition (1.8) for the function ¢; and the trace theorem [5]. As a result we
will obtain

Ik < eth™Hlu(tas)lfaggamys (4.34)

where ¢; does not depend on h, 7, p, u and that is very important for
the consideration of ”"small subdomains” (Remark 5.2) on diameter of the
subdomain G(1'*). The estimation of Ji; is a result of the using inequality
(1.9) and condition (1.8). We have

Jr2 < o (||“(tn+l)”fqz(g(1.k)) + h2||“(tn+l)||§,ra(g(1.k))

" (4.35)
+ h4(meas(GUR) 5 ultn o)y e

From inequalities (4.33)-(4.35) the estimation of ||3*|| evidently follows.
Let us substitute this estimation into (4.30). Then according to formula
(4.29), we will obtain the following inequality:

175w 17 < ekt U-1p! (|]“||é([¢0.t.];yﬂ(m) + hz”““%’;)) .
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Here we use notation (1.13). Using the left inclusions (2.21) from Theorem
2.1, Corollary 2.1, condition (1.8), inequality (1.10) and the latter estima-
tion we will obtain the total result of this section, which we will formulate
in the following form:

Lemma 4.3. There ezists the positive number v, such that the conditions
of Lemma 4.1 with py = vp[2 and any positive number ¢ hold. Then the
following inequality is valid:

s '|;2q:(g(a.n) < eg?gt-1p-3 (||"”(2;'([t°,t.];H2(n)) + hz"‘“”?*)) ;

where number c does not depend on h, 7, p, diameter of the subdomain Qlsd)
and the function u. Let us remind that k = 2h=1/TXo.

5. Error analysis

We will begin the error analysis of the domain decomposition method from
the obtaining of the integral identity, which is a foundation of the stability
analysis. Let us v"*¥/* = 27¢ntk/s and then we will sum equations (3.10)
over k from 2 to s and the result sum with (3.9). Then we will obtain

dp(€nt1,entl) 4 k=1 dp(Enthls — grt(k=1)/s entkfs _ £n+(k—1) /s)
| + 27 iy @)ty €42 grHHIs)
27 Ty T Ut 64 41
= dp(€™,€") + 27 Ei;l grE(Enthle),
Then from equality
255 tngr; €742, 7440 = pD (1,5 gn /e grtiloy

+ b5 (g EVHR2 grthls)
_ bgk,l)(tn+1;fn+k/a _ fn+l/a,fn+k/a - €n+l/a),

(5.1)

equality (3.31), formula (2.16), Lémma‘2.3 and condition (2.25) the equality
s k-1

2 Z Z bty ; £V, grikley
k=2 I=1 .
s=1 8
= E b(k'k)(tnﬂ;€“+k/"a5"+kh) + E bE (b q; E7HEI2 gnthloy
k=1 k=2

s k-1

_ 2 Z b((]k.f)(tn.l_l;gn-i-k/s _ £n+1/s,£n+k/s _ £n+.l'/a)

k=2 =1
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follows. According to Corollary 2.2 and equality (2.5) for k = s, the fol-
lowing equality -holds:

s—1
za(k](t +1 fﬂ'l"kfl £n+k/s) Zb(k k)(t +13 £n+k/a .Eu+k/a)
k=1 . k=1
= Z a(a.k)(tn+l; £n+k/a,En+kla)-

k=1
Finally, from (2.2) the equality

3 6Bt €, €0HH1%) 30 b0t €7HH 74H2)

k=1 k=2
L]

= > 0 (tnyr; EVHE/, EmHH12)

k=1
follows. Then using three last equalities the identity (5.1) may be rewritten
in the form
dh(f"+l,fn+l) + E;=1 dh(f’”kl’ - £n+(k—1)/a,£n+k/a - £n+{k-‘1)/s)
'+ T, [a("")(tn+1'€"+k/' grtk/e) 4+ ng)(t"+1;£n+k/’ §n+k/a)]
+ry, 2:::11 b(k ')(t + gntkfe €n+l/- grtkls _ En+l/a)
= dp(E", €M) + 21 Thoy gHEMHO).

In accordance with presentation of the funttionals g™*(v) (3.23), (3. 29),
(3.35) an estimation of the right-hand side of identity (5.2) is a successive
estimation of the functionals a(**)(t,,y; #+%/2 v), a™*(v), B™F(v), v (v).
The functionals a™¥(v), k < s — 1 may be estimated with the use of
estimation for the lumping operators (1.9), e-inequality and condition (1.8).
As a result we will obtain

la™*(v)| <

(5.2)

2
= 2d dh(v 1})+ _'h “ "(*)a = 19---’3 - 1’ (53)

where the norm || || is given by formula. (1.13). Then for an estimation
of the functional a™*(v) we will use the presentation

a™(v) = o' (v) + a3 (v), (5-4)
where
n,s du
ar”(v) = (5 (1) = [e(tns1)lr, v),
2" (v) ([u(tns1))r, v) = da(Ta[u(tnya)lr, v)-
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From the Cauchy-Buniakowvsky inequality, the ¢-inequality and condition
(1.8) the inequality

2
d*u

(5.5)
a2 |l 1,00

o (2)] € 7-da(v:9) + 3=

follows. For.an estimation of the functional a3"(v) we will use the inequal-
ity (1.9), the e-inequality and condition (1. 8) Then

dul|?

€212
03 ()] < g-dr(v,0) + 2777 | T

) (5.6)

(rﬂrtﬂ'{-l)

where the norm || ||¢,t.,,) i8 given by expression (1.12). In accordance
with (5.4), inequalities (5.5), (5.6) give the estimation for the functional
a™*(v). Then the estimation of the functionals ™*(v), k = 1,...,s fol-
lows from condition (1.2) and the traditional error estimation of the finite
element method [6]. Using the ¢-inequality we obtain the estimation

18™*(v)] < —ao & (tnsr; v,0) + _h2||"|IC(to,1.) W2 ()" (5.7)

Let us estimate the functional y™*(v). For k < s—1 we have the following
presentation: .

7™ (v) = 175(0) + 75 (v), (5.8)
where

(’l)) =0y )(tﬂ+l1 Hh[u(tﬂ+l)]1’! v)3 (‘U) =aqy )(tn+1: th(tn+l), U)

Similarly to estimation (5.7), it’s not difficult to obtain

d
WO < Gaftnmivo) + 27! d’: k<=1, (59)
(tnitny1
lyakw) < ?ﬂ(())(tn+1;v,t’)+E:"“”?*)s k<s-1. (5.10)

In accordance with presentation (5.8) from inequalities (5.9), (5.10) the es-
timations of the functionals y™*(v), k = 1,...,5—1 follow. The estimation
for the functional 9™*(v) may be found in similar manner, but with using
‘the presentation

7n's(v) = a((‘:)(tn-i-l; thns t?) - a(a’a)(tn-i-l; nhwns ‘U),
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which follows from equalities (2.2), (2.5) and property (2.25). As a result
we will obtain
@) < 408 (i v,0) + a0 (tnga;v,0)
—1{|du]|?
+ g. (T ! “ﬁll(tﬂ,tn.'.l) + ”u”%*)) .

Finally, we should estimate the second term in the right-hand side of pre-
sentation of the functional g™*(v) (3.35). From the Cauchy-Buniakovsky
inequality, the e-inequality, condition (1.2) and Lemma 4.3 the estimation

(5.11)

[0 (415 #7HK/2 0)| < %a(”k)(twl? v,v)

: (5.12)
+ Zau(hy ) (el ey + IR

follows. Here oi(h,T,e) = e2h=3k4*=1) k = 2h~1y/TAg. The left inequality
of conditions (4.9) gives the estimation ox(h,7,€) < (4Xg)2(~Ne2h1~42,
k < s — 1. Since ¢ is an arbitrary positive number let us

£ = 2n¥-12, (5.13)
Then the inequality
|ok(h, T,€)| £ 0o, (5.14)

is valid, where o does not depend on h, T and p. From inequalities (5.3),
(5.5)-(5.7), (5.9)-(5.12) the estimation of the functionals g™F(v) follows.
Let us substitute this estimation into identity (5.2). Using the equality

s~1 3 .
Z 2 dh(f"-H/" _ £n+(,—1)/a’En+I/3 _ Eﬂ+(l—1)/-’)
k=1 I=k+1
s
= Z(S - l)dh(£n+k/a _ £n+(k-l)/3,£n+k/a _ £n+(k_1)/,),
k=1
assuming

£1 = dl/(.s - I)T, Eq = d1/2, €3 = 1/2, €4 = ]./41', €5 = 1/1‘

and according to non-negativity of bilinear forms (3.1), we will obtain the
inequality

dp(€"F1, €M) < (14 )dn(€", €M) + 797, (5.15)

where 7 < 1 and according to (5.14) ¢ is evidently presented from right-
hand sides of the estimations (5.3), (5.5)-(5.7), (5.9)-(5.12). The use of the
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greed Gronwall Lemma [7] and condition (1.8) to inequality (5.15) gives
the following estimation:

1€ | Loy < €' (Mih + M,T), (5.16)
where
M, = ||u||c"([¢o,t.];w;(n))+||%‘,~‘||(¢0_¢_), (5.07)

M: = lullpy + 100 + 15# 2 (00)-

Finally, from (5.16) the triangle inequality and the error estimation of the
finite element method the resulting estimation follows. Before we formulate
corresponding theorem we will recall all conditions for parameters A and 7.
There are the inequality 7 < 1, the condition of the Theorem 2.1 A < yp/?
and conditions (4.9) of Lemma 4.1, which according to formula (5.13) may
be rewritten in the form:

'\ 2
2 vp
2h° < M7 < (_——__(43 — l)lnh) . (5.18)

The left inequality from (5.18) is not too restricted, since the inverse in-
equality means that explicit scheme may be used. The right inequality
is a condition of stability, which is essentially weaker than a condition of
stability of explicit scheme. Here the role of the quantity A2 (in a condition
of stability of explicit scheme) plays the quantity (pInh)2. Therefore, we
have proved the following

Theorem 5.1. Let for problem (1.4), (1.5) conditions (3.7) hold and let
{Qk)}e_  be (p,h)-regular system. Then the positive number v, which does
riot depend on parameters h, T and p, exists such that if the condition T <
1, h <vp/2 and (5.18) hold, then the following estimation is valid:

,JaX, lu" — u(ta)llLy(n) < (Mrh + M, T),

where the number ¢ does not depend on rh, 7 p and the function u(t), the
numbers My and M, are defined by formulas (5.17).

Remark 5.1. This result may be easy expanded for the third boundary
value problem. But the consideration of the Dirichlet problem requires
additional constructions connecting with the necessary condition r"+k/s =

0, z €09
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Remark 5.2. Let us consider a question about the domain decomposition
to "small subdomains”. A possibility of such decomposition with algorithm
(3.2)-(3.5) is motived by the independece of the subdomains size the number
¢ in the formulation of Theorem 5.1. Let us p = A%, a € (0,1). This
assumption means a consideration of the "small subdomains”, including
multi-connecting subdomains, for which the diameter of every component of
connection is the quantity O(h*). The conditions of Theorem 5.1 h < vp/2
and the right one from (5.18) may be rewritten in the form

h< (v/2)072), 7 < eo(h®Inh)?,

where the number ¢o = v2/(4s — 1)2)g does not depend on &, T and p. So
in order to receive the condition 7 = O(h) for sufficiently small A it must
assume a < 1/2.
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