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On the explicit-implicit domain
decomposition method for parabolic
problems

Yu.M.Laevsky

The paper deals with studying the domain decomposition algorithm on two subdomains,
where for one of them, which contains sufficiently small number of nodes, is used explicit
scheme with small time step, and for another subdomain may be used effective direct
algorithm (for example, subdomain is parallelepiped). This method is based on the split-
ting method, which is described in [1). The algorithm formulation is given in projection
form with the finite element approximation. The approximate computation of the mass
matrix is important in this paper. The lumping operators technique [2] is used for this
purpose.

1. Formulation of the problem and discretization

Let © be a bounded polytop in R™, Q1) and Q(*) be subdomains in £,
such that the conditions

aWua@ =9,  dist@", 98 >p>0 - (11)
are valid, where ‘ |

Qg’) = \B, k=1,2, B=0Mn Q(z),_

dist(, 9 = inf |Z - Flm,
( )= o dnf L 1Z = Glm,

|+ |m is the Euclidian norm in R™.
Let D be a subdomain in . In the space H}(2) x H!(Q) we consider
one-parametric families of the bilinear forms

. B m _ 3 a _
ap(t; u,v) _=/D Z A;j(t,m)ﬁafj—_dm, (1.2)

1,7=1
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where t € [to,t.] is a real parameter. For the functions A;;(,Z) we assume

that bilinear form (1.2) is symmetric, continuous and coercive, i.e., Vu,v €
H'(Q) the inequalities

lap(t;u,v)| < aollullg (p)llvll a2 (p)s (1.3)

ap(t;u,u) 2 aplulfnp) (1.4)

are valid, where ap and a; are positive numbers, which are independent

of t. Here |u|pn(py = (fp |Vul|?dZ)!/? is a semi-norm in the space H'(D).

Assumptions on smoothness of the functions A;(¢,%) will be given in what
follows. We will use the notations:

a(t; u,v) = aq(t; u,v), a(")(t; u, v) = age (t; u,v),
~ag (Hu,0) = agm (4w, v), b(t; u,v) = ap(t; u,v).
L]

From conditions (1.1) and notations (1.5) we will obtain the following ad-
ditive presentations:

a(k}(t; u,v) = a:g‘)(t; u,v) + b(t; u,v), k=1,2, (1.6)
a(t; u,v) = aM(t;u,v) + agz)(t; u, v). (1.7)

Then we introduce the family of the continues on t and continues in
Ly () linear functionals (f(t), u), where (:,-) is the scalar product in Ly(2),
[ :[to,t.] = L2(f2). Henceforth, by u(t) we denote the value of the function
© : [to,ts] — X, which is the element of some Banach space X, and %’ti(t)
means a strong- limit in X (if such limit exists) of the elements [u(t)], =
(u(t+ 1) — u(t))/ for T — 0.

Now we will formulate the parabolic Neumann problem, for which
we will construct the domain decomposition algorithm. Let ug € Lo(Q)
and f € La((to,ts); H~1()). It’s necessary to find the function u €
La((to, 4); H'()), such that 9% € Ly((to,ts); H~1(R)) and Vv € HY(Q)
the following equalities are valid:

. (%(t),”) + a(t; u(t),v) = (f(t),v), tE€ (to,t], (1.8)

(u(tO)v”) = (an"")° (1.9)

Let us introduce some notations for discretization of problem (1.8),
(1.9). Let 7, be a regular set of m-simplexes with “inverse assumption”
[3]. For set 7; we will introduce the finite-dimensional space V, with the
piecewise linear basis {pi(Z)}icr, where ¢i(Z;) = &, i,7 € I, T; is a set
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of all different vertesies of the set 7;,. Then let Il : C(Q) — Vj be an
interpolating operator defined by the formula IMyu(Z) = ¥, ., u(F:)pi(2).
In accordance with paper [2] we introduce the lumping operator P, in
the space Vj, for which the condition of the approximation relative to the
scalar product in Ly(Q) is valid. Let us consider the bilinear form

dp(u,v) = (Popt, Phyv), u,v€ V. (1.10)

As shown in [2], there exist numbers dy and d, independent of &, such that
ldn(u,v) | < do |l u ||l v llo(0)s (1.11)

dn(u,u) 2 di || u |1}, , (1-12)

for any u,v € Vj,.

Let us give some inequalities, which will be used further. Let u € Wg(ﬂ) :
where p > m/2. Then according to inclusion of W2(Q2): into C(Q) the
function II,u € V; is defined. In accordance with [2] for bilinear- form
(1.10) the following estimation of approximation is valid:

| (u,9) — dn(Taw, v) |< k¥ { | u | gegan] v lman

" p=2
+ B~ (meas(2)) 7 | u lwall v llLa) }s

where k,l = 0,1, Q' = supp(v), number ¢ does not depend on h, u, v and
Q. Let us give the so-called “inverse inequality” for functions from the
space V; [3]: ' Lo

(1.13)

| v |g@n< ™ | v llLyca1), (1.14)
where Q' = J e7s €, T C Th, number c does not depend on A, u and V.

Finally, let us introduce notations for two norms, which will be used
further:

1/2 ‘
”u“(t’.t”) = [”u”iz((t’,t");Hl(n)) + h:_z|I“||%,2((¢'.¢~);W3(n))_] / ) (1.15)

1/2
lelly = el o canysrscay) +h2||“||20([to,¢.]);w;(n))] 2. @)

All these notations and inequalities were presented in [1].

2. Explicit-implicit scheme

Now let us formulate the difference Neumann problem. Let N and s be
some integer numbers, 7 = (tx. — #)/N, 7o = 7/s and t, = txg + nr, n =
1,...,N. It is necessary to find the sequence of the functions

{urt*/? gk =1,...,s, W™, @™ n= -1},
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such that un*k/2s yn+l gntl ¢ V, and Vontk/2s k= 0,...,s, v"t € V},
the following equalities are valid:

dh(un+(k+1j/23 _ u"+k/2=, vn+k/'2s) ‘

| (2.1)
+ Tga(l)(tn; un+kl2a’vn+k/2s) =0, k=0,...,8—1,
5-1
dh(ﬂn+1 _ un+1/2’ vn+1f2) -7 Zb(tn; un+k/2a, vn+1/2) =0, (22)
k=0
dp(u™* — @™ o) 4 ra (b w0 = (f(2,), 0™, (2.3)
u® = T, uo. (2.4)

" Here we suppose that ug € WZ(Q), p > m/2, which ensures the inclusion
of W2(Q) into C(£) and therefore the function Il uo exists. For further
consideration let us present the system (2.1)—(2.3) in some other form. Let
o™ = v"+1/2 and sum up equations (2.2), (2.3). As a result we will obtain

dh(un-{-l _ un+1/2,vn+1/2) + ‘ram(tn; un+1,vn+1/2)
s-1 (2.5)
- 10 Z b(tn; un+k/25, vn+1/2) — T(f(tn), vn+1/2)_

k=0 )

Let u(t) be a solution to problem (1.8), (1.9). We assume that the
following conditions hold:

Aij € C([to, t.); C3(Q)), u € C([to, t.]; W(R)),

du/dt € La((to, t.); W2(Q)), d*u/dt* € Ly(Q:), 20

where @ = (to,%.) X Q. According to (2.6), the function Hyu(t,41) exists
and, henceforth, we may introduce the sequence:

grthias — yntk/2s _ Ouu(ts) + or™tH2s k=0,...,s,

(2.7)

& = W™ - Mu(ten),
where 7"(Z) = 0 and the functions r"**/2¢ ¢ V},, k = 1,..., s will be defined
later. Then according to (2.4) £° = 0. In accordance with equations (2.1),
(2.5) let us write the scheme for the functions £"+*/2s, We have

dﬁ(£n+(k+1)/28 _ En-i-k/?a’ ,Un+k/2.s) + Toa(l)(tn; En+k/23, vn+k/23)

(2.8)
- Togn,k(vﬂ+k/2"), k= 0,.'..,3—.1,
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dh(£n+1 _ En+1]2,vn+1/2) + Ta(2)(tn;fn+l, vn+l/2)

= ntkf2s  n+1/2 ns¢, n+lf2 (2.9)
— 70 ) b(tn; €142,y 41/2) = rgme(v7H1/2),

k=0
Before writing the functionals g™*(v) let us introduce some notations. Let
jntkf2s _ ntk/2s _ kﬂhz(tn), E=0,...,s,

1)=- Y ()0,

1,7=1

where

The existence of the functions II,z(t,) follows from conditions (2.6). Ad-
ditive presentation (1.7) and Green’s formula gives an equality

e (t; u(ta),v) = (2(tn), ) — 60 (tn; u(ta), v)- (2.10)
Then the functionals g™*(v) are defined in the following form:
g™ () = () + g7 (), k=0,...0, (2.11)
where
g;hk(v) = dh(f'n+(k+l)/2’ _ fn+k/2a’v) + Toa(l)(tﬂ; i.n+k/28,,v) (2 12)
+ at(,z)(t,‘;u(t,.),v), k=0,...,8—-1, .
s 1 ) -1 )
g7°(0) = < ((F™,0) + 70 3 blta; ¥4/, 0)
k=0 (2.13)
— ) (tn; ul(tn), v),
g;""‘(v) = —aj(v) + 87 (v) + kroyf(v), k=0,...,8—1, (2.14)
95" (v) = a1 (v) + a3(v) + B3 (v) + 717 (v)- (2.15)
The functionals af'(v), 8(v), 17'(v), { = 1,2 are given by equalities
ay(v) = (2(tn), v) — dn(Ilnz(tn), v),
du .
a3(v) = (G (tn), ) = da(Talulta)]r, o),
Br(v) = a(l)(tﬂ; u(ty) — Myu(ty), v),
(2.16)

B3(v) = a$(tn; u(tn) — Mau(tn), v),

T(v) = aW(t; Maz(tn), v),

12 (v) = 1%ﬁb(tﬂ;l'[;hz(t,,),t:) - a(z)(tn;l'[h[u(t,.)].,.,v).



84 Yu.M. Laevsky

Here we used integral identity (1.8), additive presentations (1.6), (1.7) and
equality (2.10). ‘

Let us consider the question on a choice of the functions #"+*/2s  Dj-
viding equalities (2.12) on s sum up them over k from 0 to s — 1 and the
result sum with equality (2.13). Using equality (1.6) for £ = 1 we will
obtain the following presentation of the functional ¢7"*(v):

s—1

w1 ) ,
FOEEDY (Toa(l)(tn; I 0) - gik(v)). (2.17)
k=0 )

Let us define the functions #"t¥/25 from the following conditions: Vv € Vj,
g?’k(v) = Toaglj(tn;in"'k/zs,v), k=0,...,s—1. (2.18)
From equalities (2.11), (2.17) and (2.18) it follows

g (w) = Tga(()l)(tn; Frtkl2s ) 4 g;"k('v), k=0,...,s—1

o s (2.19)
9™*(v) = 95" (v),
where the functionals g3 ’k(v), k=10,...,s are given by equalities (2.14)-
(2.16). In accordance with equalities (1.6), (2.12) system (2.18) may be
written in the following reccurent form:

dh(,’-;n+(k+1)f23, ‘U) — dh(f_n-l-k/Zs, ‘U) _ Tob(tn; f.n+k/23, T)) ( )
2.20
- a((f)(tn; u(tp),v), k=0,...,8—1.

Therefore, we have comletely defined the right-hand side of error equations
(2.8), (2.9).

3. Error analysis

We begin the error analysis from the obtaining of the integral identity,
which is a foundation of the stability analysis. Let us ov?+k/2s =
2rpnt(k+1)/2s k= 0,.., s~ 1 and v"*1/2 = 27£7*1 and then we will
sum equations (2.8) over k¥ from 0 to s —'1 and the result sum with (2.9).
Here we use additive presentation (1.6) and evident equality

2ap(t;u,v) = ap(t;u,u) + ap(t;v,v) — ap(t;u — v,u — v).
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As a result we obtain

s—1
dh(En+l$§n+l) - dh(&n,&-n) + dh(‘f)s, 1]3) + Z Jh(tn; nk)
k=0
s—1
+ 70 Z(a(l)(tn; En+(k+1)/2s,€n+(k+1)/2_,)
k.—
010 14472, €2H412)) 1 (o015 €741, 641) (3.1)
s—1
(2)(tn,£n+1 ) 4 1o Zb(t L EnL_ gtk[2s gnbl_ gntk/2sy
k=0
s—1
= 279 Zgn,k(€n+(k+1]/23) + 2Tg’n"’(§n+l),
k=0

where "?k - §n+(k+1)/2a _ §n+k/23, k=0,.. Ls—1,7° = {:n+1 _ £n+1/2, and
the functional Jy(¢;v) is presented in the form

Jr(t;v) = din(v,v) — T0aM(t; v, v). (3.2)

Our further actions are connected with estimation of the functionals g™*(v).
For this aim we use standard technique based on using of the Cauchy-
Buniakovsky and the ¢-inequalities, estimation (1.13) and the well-known
results about interpolation in Sobolev’s spaces [3]. As a result we obtain
the following estimations:

€1 ¢ .
o ()] < ﬁdh(v,m Lhul,, (33)
€2 ~1p2
n < &
lez (V)] < dh( v )+452” dt2‘L2((tn,z,,+l)xn) £9 “ (tnrtns1) (3.4)
181 (v)] < _au)(tn3”v”)+ —h2|]””C{[to,:.];W§(ﬂ(1)))a (3.5)
n €4 (2) 2
Iﬂz(”)l < a[) (tﬂl ’U)+ h’ " ”C([t t]w2(0(2))) (3‘6)
I (v)] < —am(tn:v:vH —IIHII(*), (3.7)
n €6 _(2) -1
MO < TG00+ 2 (it + | G ), (38)
where the norms || - ||(t,,,t,, +1) and || - [|x) are defined by expressions (1.15),

(1.16). Moreover for estimation of the functional 73(v) we used the fact
that B C Q® and therefore b(t v,v) < a®(t;v,v). In accordance with
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presentations (2.14), (2.15) inequalities (3.3)-(3.8) allow to estimate the
functionals gj"*(v).

Let us consider the functional agl)(t,.; k(s ) k=1,...,s—1, includ-
ing to the right-hand side of the first equality from (2.19). The following
result is valid:

Lemma 3.1. If s < p/h+ 1, then
ol ;iK% ) =0, veVh, k=1,...,8-1

ProoF. Let 9(2) 9(2) and I (2} pe the numbers of the points Z; € 9(2)

Then let us construct the sequences of the sets I, (2) 9(2), I=1,...,k-1.
Let us suppose

1P = {iel|VieI®,, supp(e:)Osupp(e) #0},  (3.9)
Tip = {e€T|Fiel?, ziee}, aP= |Je (310
e€Th i

Let us note that I,Ez) ») I,E,z_)l, 9}3) D 953_)1 and the sets Qf) are closed.
Continuing this process, we will construct the sequences of the extending
sets Il(z) Ccl E’l and 9(2) .C 952-)1- Then for an arbitrary z € Qf)
the point § € Q§¢21 exists, such that the inequality | — §|», < h is valid.
Let Z € 9(2) \Qm (Ifze 99—)1’ we may put Z = §.) According to (3.10)
there exists j € I, ( )
Z. Then Z; € 9(2)1 a.nd the inequality |Z — Zj|m < b is valid. Let § = ;.
From the obtaining fact and the condition of lemma it follows that for an
arbitrary 7 € ﬂ£ )1 the point §j € Q( ) exists and

- number of point from e, which contains the point

&= Glm < (s= 2k < p. (3.11)
Let us show correctness of the inequality
dist(QM, @) >0, k=1,...,s-1. (3.12)

It is sufficiently to prove this inequality only for the set Qf,"_’_)l, since this set
includes all sets Q?). Let us assume that inequality (3.12) is not correct.
It means that Q((,” no® # 0 and let Z € Q(()i) NQ®. . Then the point

s-1 s-1

g€ ng) exists so that inequality (3.11) is valid. This fact contradicts to
condition (1.1). Obtaining contradiction proves inequality (3.12). Let us
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sum up equality (2.20) over k from 0 to ! — 1, assuming v = ;.” Then we
will obtain

-1 :
,.n+l/2a($ ) _ —TozZp_zfn-'-kns(ﬂ?g)b(tm%,%)
k=0 jel o (3.13)
—lprzao )(tn;u(tn),cg,-), I=1,...,s-1,
JjeI Co- . N I

where p; = (dn(yi, ;)2 Let Ilm =1\ Ii{z). By induction we will show
that #7+/25(%,;) for i € Il(l), l=1,..:,8—1. In the first place the evident
equalities are valid:

a(Z)(tﬁu(tn)a(Pi) ='0’ I(l)_ l : 1a ,.S— 1 (314)

Since #*(z) = 0, from (3.13) and (3.14) it follows that #"+1/25(z;)'= 0 for

1€ I{l) Let #7tk/2s(z,) = 0 for i € I{l), k <1l—1. Then for i € I(l)
accordmg to (3.14) equalities (3.13) assume the following form:

: 1-1 o o
,;_17.4-1/25(5‘,) = -7, Z Z p;zfn*klzs(fj)b(?n;:ﬁoia ﬁaa) '

k=0 je ()

According to (3.9) b(tn; cpj,go,-) #0forje I,(c) only for i € I,(;i)l. It means
that #"+/23(z;) # 0 only for i € I,m and #"H/25(z;) =.0 for i"eI,(-l).
Therefore #7t//25(%) # 0 only in the domain Qg?) and in accordance with
(3.12) #7+1/23(3) = 0, when z € ﬁ(l). By this lemma is proved. o

* From Lemma 3.1 and equalities (2.19) it follows that g“"‘(v) gy k(v)
k=0,...,s for s < p/h + 1. Therefore inequalities (3.3)-(3.8) allow to.
estlmate the functionals g™ "('u), which are the right-hand side of mtegral
identity (3.1). Let us use these estimations, supposmg that -

d1/12 £2—d1/24 63——1/2 E4—1 55—-1/21‘ 86-—1/1‘

and inequality

d (£n+(k+1)/23 £n+(k+1)/23) < zdh(g" ,f") + .s(s + 1) Z dh('? "I)
. ) Y 1= S

The latter inequality follows from the evident presentation gnt(k+1)/2s =
£+ Ef:o n' and from the Cauchy-Buniakovsky inequality. As a result of
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non-difficult transformations we obtain
(1= 7/6)dn(€"+ )+ i {Inltnsn®) - UCRDO N n")}
= 12 (3.15)
< (14 7/6)dn(€",€™) + 7",

where by evident way %" is defined from the right-hand sides of inequalities
(3.3)~(3.8). From (3.15) it follows that inequality

Ju(t;v) 2 ZE%th('v, v), t€ [to,t,], vEV, (3.16)

is a sufficient condition for stability of method (2.1)-(2.4). Let us use
inverse inequality (1.14), which according to conditions (1.3), (1.12) may
be written in the form:

a(t;v,v) < Ah~2dp(v,v), tE€(to,ts], vEVW, (3.17)

where the number ) does not depend on h, t and the function v (A = cao/dy,
¢, ag, dy are the numbers from inequalities (1.14), (1.3), (1.12)). Let the
following conditions hold:

h<p, t<poh, s=][lr/h*]+]1, (3.18)
where the parameters Ao and po are given by equalities
o= XM+ p%/4, po=p/re. (3.19)

Let us. show that from (3.18) it follows the condition of Lemma 3.1 and
inequality (3.16). At first the evident inequality s < Ao7/h% + 1 holds.
From this inequality in accordance with the second condition from (3.18)
. it follows the condition of Lemma 3.1 s < p/h+1. Then, since s > Agr/h?,
two first conditions from (3.18) give the inequality

A s+1

In particular, from this inequality it follows that ﬂ%ﬂ < 1. Then multi-
plying inequality (3.20) by the functional dj(v,v), using inverse inequality
in the form (3.17) and taking into account that 7 = s7o, we obtain the

estimation 1
Toa(t;v,v) < (1 - T(sl-; ))dh(v,v).
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Evidently, from this estimation we achieve the inequality (3.16). Moreover,
two first conditions from (3.18) give the estimation

T < pop < 4p7/(4X + p?) < 4,

" from which it follows that (1 + 7/6)/(1 ~ 7/6) < 1+ 7. Using the latter
inequality and inequality (3.16) let us intensify estimation (3.15). As a
result we obtain

dp(E"F1, €M) < (1 + 7)dR(E™,€7) + 3Ty

By standard scheme this inequality leads to the resulting error estimation
of the explicit-implicit domain decomposition method. So, the following
result is valid.

Theorem 3.1. Let for problem (1.8), (1.9), conditions of smoothness (2.6)
hold and let subdomains Q¥), k = 1,2 satisfy conditions (1.1). Then from
conditions (3.18) it follows the error estimation

B lu™ — w(ta)llz, () < c(Mrh + M,7),

where the number ¢ does not depend on h, T, p and the function u,

du
My = Jlulleqo,tgwz ) + lulls + ”E{

1% o
(tots) 11 dt2ilL5(Q)

(tO 1t'),

M, = fully + || 5

the norms || - [|(z,t.) and || - || are given by formulas (1.15), (1.16).

Finally, let us count a number of arithmetical operations, necessary
for realization of method (2.1)-(2.4). Let K ! = 1,2 be a number of
greed-points from subdomains (), and K1) « K(?), Let us suppose that
for realization of implicit step (2.3) it is possible to use some economical
algorithm, for which the number of arithmetical operations in one time-step
is proportional to K(?), Then the total number of arithmetical operations
is K = O(N(sKM + K®)). We have K@ = ¢(p=™ and let K1) =
cMh=m+e o € [0,1]. Then p = h* and according to condition of Lemma
3.1 s = O(h®~1), and from the second condition (3.18) N = O(h~1~%). As
a result we obtain

K = O(C(l)h—m_2+a + 6{2)h—m~—1-a).

This formula shows that computing costs for realization explicit and im-
plicit steps have the same order when a = 1/2.



90 © Yu.M. Laevsky

References

[1] Yu.M. Laevsky, Direct domain decomposition method for solving parabolic equations,
Comp. Cent. Sib. Br. Ac. Sci. of USSR, Novosibirsk, Preprint No. 940, 1992 (in
Russian).

[2] Yu.M. Laevsky, Lumping operators in the finite element metheds, Part 1, Comp.
Cent. Sib. Br. Ac. Sci. of USSR, Novosibirsk, Preprint No.907, 1990 (in Russian).

[3] P. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland
Publ.Comp., Amsterdam - New York ~ Oxford, 1978.



