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On energy estimates for preconditioning
grid parabolic problems

Yu. Laevsky

The paper deals with studying of some preconditioning operators providing un-
conditional convergence of difference schemes for solving parabolic problems. Three
examples of such operators are considered. There are a preconditioner of the domain
decomposition method of the Neumann-Dirichlet type and two preconditioners of

the fictitious domain methods for the Neumann and the Dirichlet boundary value
problems respectively.

1. Introduction

Regularization is the basis of a guarantee of unconditional stability of two-
layer difference schemes [11, 12], i.e., there is considered the following family
of schemes in the Euclidean space £k of K dimension:

ﬁ""’l—ﬁ“ _
B,-—T—-+Aﬁn=f", n=0,...,N-1, (1.1)

where A is a positive semi-definite matrix, B, = I 4+ o7B is a positive
definite matrix, and 7 is an identity matrix, o > 0. In this paper we consider
only the symmetric matrices A and B. The matrix B plays the role of a
regularizator. The standard a priori estimate, providing stability in the
energy norm of any positive definite matrix D, contains ||B?||p-:1 norm,
where D = B, or D = A [12, Theorems 6 or 7 on pp. 312, 313]. For splitting
schemes the boundedness of this norm (for a small spatial step A) results in
strong requirements on smoothness of the differential problem solution (the
fourth spatial derivatives must exist). On the other hand, there are efficient
procedures for inversion of the mesh operator of the Helmholtz equation
in the rectangular region with a uniform grid such that their use does not
require, generally, any additional smoothness in the generalized solution
[3]. Many modern approaches for the design of iterative procedures with
preconditioning operators of solution grid elliptic problems are based on the
use of such a type of algorithms [13]. In this work, an attempt is undertaken
for the transfer of a number of ideas, that are developed for the design of
such preconditioning operator to construct schemes in the form of (1.1) with
the efficient inversion of B, matrix.

As will be seen, the solution to this problem could be realized by the
requirement of uniform in A energy equivalence of A and B operators:
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c1(AR, @) < (B, @) < c(A, @) Vi€ Ex. 1.2)

Here ¢; and c; are positive, independent of h numbers, with a possibility
of effective solution to the system B,% = §. However, we cannot succeed
in designing a sapid example of B matrix, satisfying all these requirements
simultaneously. On the other hand, it is sufficient to use essentially weaker
than (1.2) conditions to provide a priori estimate, that will be presented in
Section 3. Exactly, let us assume that there are the numbers & > 0, 8 > 0
and v > 0 independent of h, such that V& € &g

—a(A#,5) < (Bi, ) < f(A, ), (13)
7{A+u, %) < (B, 1, 1), (1.4)

where A, = I + 0TA. Let us note that we even do not assume nonnegative-
ness of B matrix. In Sections 4-6, some examples with such a matrix will be
presented. The first example is the domain decomposition method with the
adjoint conditions of the Neumann-Dirichlet type on the boundary between
subdomains. Here we use the construction similar to [1]. The fictitious do-
main method [9] gives other examples. The Neumann problem, as a simple
case, will be considered apart, and then we will study the Dirichlet problem
with the symmetric extension of the matrix in “junior term” [7, 4]. The
application of the fictitious domain method to nonstationary problems was
considered in [5]. The error estimates in Ly-norm, corresponding to these
examples, are presented in [6]. Here we give the error estimates in energy
norm with the use of other a priori estimates. To prove all the statements
we use the technique from [6] and do not present its here. For splitting
schemes in general case such estimates are unknown.

Finally, a few words about the terminology. As the regularizator B
replaces the condition number of the step operator of an explicit difference
scheme, hence the analog of the elliptic case is called the preconditioning
operator. .

Before giving account of the main results, we will formulate the differ-
ential problem and present its approximation by the finite element method
in the next section.

2. Problem of formulation and discretization

Let 2 be a bounded open polygonal region in R? with the boundary T' =
o UT;. We will denote

HY(Q,To) = {u e HY(Q) | u(z) =0, z € T},

where H(f) is the Sobolev space. In the space H!(2) x H(Q), let us
consider the bilinear form
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2
ag(u, U) = [n( Z a;j(f)g—;gf‘; +ao(§)uv) dz,

f,5=1

where Z = (21, 23) is a point in R2. For the functions a;;(Z) and ao(Z) > 0
we assume that the bilinear form agq(u,v) is continuous and H(R,T)-
elliptic. Let us introduce a family of the functionals (f(t),v)q, that are
uniformly continuous in ¢ € [to,t.] in the space H-1(Q) x H'(S2). Here
the inner product (-,-)q in L2(f2) is expanded to the duality relation on
H=1(Q) x H'() [12]. Further the notation u(t) means that u : [to,2.] = X,
where X is a Banach space, and %‘f(t) is a strong limit in X (if such a limit
exists) of the elements u,(t)=L1(u(t + 7) — u(t)) for 7 = 0.

Let us formulate a parabolic problem to which we will apply the schemes
with preconditioning operators. For up € L2(S2) and f € La(to,tu; H ‘159))
it is necessary to find the function u € La(to, t.; H*(2,T'o)) such that 5% €
La(to,te; H"1()) and Vv € H(Q,T) the following equalities are valid:

(%§@%0)94-MﬂuﬂLv)=(fGkan (2.1)
(u(to), v)a = (o, v)a. (2.2)

For simplicity, further we will study the examples with a;;(Z) = 1, a;;(Z) = 0
at i # j, and ao(Z) = 1, i.e., aq(u, v) is the inner product in H*(S).
‘Consider the finite element spatial discretization. Let 7j be the regular
triangulation of © [2], and {y;(%)}X, be the piecewise-linear basis on 7;.
Then H} () = span{pi(z)}X, and HL(Q,To) = HL(Q) N H(, o). Then,
using lumping operators, let us introduce the mesh inner product dq(u,v)
in L2(?), that is equivalent to the usual inner product uniformly in h, ap-
proximates it and leads to a diagonal mass matrix. Particularly the positive
numbers v and u exist such that the following inequalities are valid:

viullf, ) < dalu,v) < plulll,q)- (2.3)

Moreover, we will use the bilinear form a,q(u,v) = dg(u,v) + orag(u,v),
that is defined in the space H}(Q) x H} ().

Now let us introduce the vector-matrix notations. Let £x be the Eu-
clidean space of dimension K with the inner product (-,-)x and the norm
| - ||, where K is the number of vertices of 75 in © \ I'q. The conformity
between £x and the space H}(S2, Tp) is determined by the following relation
for the components of the vector @ € £k: (@); = pju(Z;), i = 1,..., K,
where p; = /da(p;, ¢;). For the right-hand side of the equations we will
use vectors with the components (f); = f:( fyei)a. Then let A be a sym-
metric matrix of order K with the elements (A);; = %ﬁag (®iy ;). It is not

difficult to see that the following relations between mesh inner products in
Ly(Q), HE () and Ex are valid Vu,v € H} (R, To):
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da(u, v) = (ﬁ, Uk, aq(u, v) = (A%, t_))K. (2.4)

In particular, from (2.4) it follows that the identity matrix I of order K cor-
responds to the bilinear form dg(:, -) in the subspace H}(S2,T'o) x H} (€2, To).
As the initial value for scheme (1.1) we will use the vector @ with the
components p;uo(Z;), where ug is the function from (2.2).

3. A priori estimates

The explicit presentation of the error structure is the basis for the a priori
estimatebs given below. Let {@"}_, be a sequence of the vectors from £k,
and in accordance with (1.1) the vectors £ = %" — w" satisfy the equations

En+1_€n _
BT—T-+A£"=§“, n=0,...,N-1,

where §" = 2" — oTB@? and 7" = f* — ¥" — AD", W} = (@t —am), b
corresponds to the function f(t,). The following statement is valid:

Lemma 1. From conditions (1.3), (1.4) at 0 > % and v < 1 for arbitrary
n=1,...N, it follows:

_ n—1 1/2
16114 < cof 1€ + o7 3 (I41F + (om)P(® + AD)a4, ) |, (8

k=0

where the positive number co does not depend on the parameters a, 3, v,
and o. If B is a nonnegative matriz (a = 0), then the following estimate is
also valid:

a n-1 1/2
1€°la < cof IEPWG + 07 T (IHIP + (0Bl B)} . (32

k=0

In the following sections Lemma 1 will be used in different situations,
and therefore the errors will be separately estimated for each example. Let
us note that to formulate the method in the form of (1.1) we are in need of
the exact value of the parameter v, because the choice of o depends on it.

4. Domain decomposition method

For simplicity we will consider in this section the Neumann problem
(To = 0). Let Q be a union of non-overlapping subdomains ©; and Q;
such that the conditions
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§1U§2=ﬁ, (N =0

are valid. Other restrictions on Q will be indicated later. Further we will
use the following notations: § = @, N0y, Qo = X%\ S, k = 1,2. Let
all the nodes of the grid be partitioned to three groups: the first group
contains nodes lying in the set 9, the second — nodes from S, and the
third one contains nodes from 5. In accordance with this order, the space
€ = Ex with the inner product (-,-) and the norm || - || may be presented
as £ = & X & X &, where &, i = 0,1, 2, are the Euclidean spaces of orders
Ki, Ko + K1 + K, = K with the inner products (:,-); and the norms || - ||;.
Then A matrix has the block form

A;p Ap 0
A=| AT, Aw Ao
0 AL Az

In the spaces £(1) = & x & and £ = & x & with the inner products
(*»)(x) and the norms - llx)> k& = 1,2, respectively, the matrices

A= [ o] = (A e ]
ATy Ag AL, Axp

where Ag,) + Agf,) = Ago, correspond to aix(u,v) = aq, (u,v), k= 1,2.
Let wy = Q3 N (Uz;essupp p;) (see Section 2) and dy (v, v) = dg, (u,v) +
du, (v, v), d2(u, v) = dg, (u, v) - d,, (u,v). From (2.3) the inequalities

() 2 el da(w) < pllully oy (41)

follow. Then in the spaces £(1) and £(?) the matrices

D(l)-_—[I' 0], D(2)=[o o]
0 I 0 I

correspond to the bilinear forms di(u,v), k = 1,2, where I;, i = 0,1, 2, are
identity matrices of orders K;. And finally, the matrices A®) = D) 457 4(R)
correspond to the bilinear forms a, x(u,v) = a,q, (u,v).

Now we consider the approach from [1}, but using the bilinear form
ar2(u,v) instead of az(u,v). Let us find for all u € H}(Q2;) the expansion
% = ug + up such that up € H} (2, S) and the equality

ar2(ug,v) =0 Vove Hi(Q,S) (4.2)

holds. It is not difficult to show that for a function u € H,{(Qg) and cor-
responding vector @(?) = (al,al)T € £(2), the vector presentation of this
expansion is defined by the equalities
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ipo=0, tp2= (%1'2 + Azz)—lAgzﬁo + ia.

Then ﬁg) =al? - ﬁg) and (4.2) may be rewritten in the form
(AP, 5@, =0, Vi® e @, o) =o0.
Let us consider in H}(2) x H}(S) space the bilinear form

by (u,v) = ar1(u,v) + ar2(up, vp).

To this form the matrix B, = I + o7 B of order K, where

An Ao 0
B=| AT, AD + Ap(El+ A) 'A%, Ao |, (4.3)
0 AL Agp
corresponds. Let
I 0 0
Qr= 0 Iy 0

0 (AL+An) AL I
Then B, = QT D.Q,, where D, = I+ 07D,

(1)
D=[A 0]_
0 A2

The indicated presentation means that an inversion of B, is reduced to

one inversion of A% (solution to the Neumann problem in §2;) and two
inversions of I, + o7 Az; (solutions to the Dirichlet problem in Q7). These
inversions may be realized efficiently [3] for the following structure of 2, for
example. Let

Q(’) = {(31132) l x(i_l} <1 < m("}s y(i) <z2< z(i)}s i= 1,.. 12m+ li

and . m
Q= |G+, Q=] o).
i=1

=0

Moreover, let z(l) - y(l) > 3(2) - y(z)’ z(zj) - y(zJ) < 2(25"'1) - y(zJ’"‘l)’
j=1,...m. Then we have the Neumann problems for odd rectangles and
the mixed problems with the Neumann conditions on the horizontal sides,

and the Dirichlet conditions on the vertical sides for even rectangles. It
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is assumed that the step size in variable z; is A2 in the whole domain
(a restriction for the numbers 2() and y()). Then let the step sizes in
variable z; in the subdomains Q) be A{") = (2() = z(~1)/p; where p; are
integer numbers.

Let us find the parameters «, 3, and v from conditions (1.3), (1.4). We
use the following notation: ‘

1 -1
Ag) = Ag) - Aoz (;Iz + A22) Aga,

where Ag)) is a positive semi-definite matrix of order Kp. Then B = A-C,
where

0 0 0
C=[0 AR o
0 0 0

is a positive semi-definite matrix of order K. From nonnegativeness of C
matrix the right condition of (1.3) follows when § = 1. Then let us find
o such that the left condition of (1.3) holds. It means that (Cd,u) <
(1 + @)(A%, u). For the Rayleigh relation we have the inequality

R(ﬁ) = (Cﬁ, ﬁ) < (A(()%)EO’ ﬁO)D

= (A, 3) = (A0, 7))’ (4-4)

4= [ N ] GE, ﬁoefg, ﬁ(l)= [ :; ] EE(I).
U

As it is known, the inequality (Ag)ﬁn,ﬁo)o < #(A‘(‘?)ﬁ(z),t-,(z))(z) is valid

V5 € £ such that i = o (see, for example, Lemma 1 from [10]). In
accordance with (4.1)

<A1(rz)'7(2), t7’(2'))(2) < #""”%,(na) + 0'7'""”.%11(92)
(4 is a number from (4.1)). Then the estimate for the Rayleigh relation

#”””i,(nz) + 07’“””?{1(92)

R(u) <
@< 0""”“”3;1(91)

, v(&)=u(3), €8, (4.5)

holds. Thus, there arises a standard problem of extension of piecewise-linear
functions from ©; onto Q; with the minimal norm. The following statement
is valid:
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Lemma 2. There ezists a positive number ¢ independent of h and T such
that V@ € £ at or < 82, where § = Lminiz,. 2me1(z®) — z(-1)), the
estimate R(4) < ¢ /\/oT holds.

Corollary 1. From Lemma 2 and presentation (4.4) it follows that a =
oo /+/oT, where the number ag does not depend on h, 7, and .

Finally, let us find + by estimating the Rayleigh relation

R. () = (B-4,q)

Let \o be the maximal eigenvalue, and % be the corresponding eigenvector
for the problem
A,¥ = AB,0. (4.6)

Then R.(@) < Ao, and the trivial case Ag < 1 immediately leads to the
estimate vy > 1. Let Ao > 1. Since B= A - C, then B; = A; — o7C, and
problem (4.6) may be rewritten in the form

(A= 1)A,5 = \a7C¥.

It is not difficult to show that from the condition Ao > 1 the equality w =
S, (1), where
I 0

S-r = 0 Iy )
0 —(LL+ An) AL
follows. Taking into account S,T A.S; = As-l) + arS? CS,, we will obtain

1(;ﬁo - l)As-:):T)(l) = O'TSICSTW(I). As (SICST‘ITJ(I),@(I))U) = (Ag%)ﬁic, ﬁ?o)o,
e inequality

(S'E;PC"S“}Pm(l)1 ﬁ’(l))(l) < %(A(g)t—,(?)’l—,(?))(z) vi? e 5(2), Tp = Wo
holds and the following estimate of the Rayleigh relation is valid:

(As,z}ﬁ@), 5(2))

R.(7) <X <1
TwL‘""meﬁmmm)

vie&, Vo e @, g = wo.
Analogously to (4.5) and in accordance with (4.1) from this inequality follows
the estimate '

pllvliE, ) + o7lIvllEn g,)
V”wuiz(n,) + 0"'""””%11(91)

R.(@) <1+ (@) =w(E), €8, (47)
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where w is the function in H} () corresponding to the vector w. A solution
to the extension problem in this case gives

Lemma 8. Let o1 < 3ud%, where & is the number from Lemma 2. Then
the following estimate is valid Vi € £:

R.(@) <1+2%,
where p and v are the numbers from inequalities (4.1).

. Corollary 2. From Lemma 3 and (4.7) it follows that v = (1 + 2u/v)~!.

Remark 1. For the mesh described above it is not difficult to find the
numbers p and v.

Thus, in accordance with Corollaries 1 and 2 the parameters from con-
ditions (1.3), (1.4) are as follows:

a=%, g=1, ‘y=(l+2§)_l.

Now we consider the convergence of scheme (1.1) with B matrix from (4.3).

Before we formulate the theorem let us indicate the smoothness conditions
for problem (2.1), (2.2):

we Hto, b HYQ), T2 € Lalto, i H'(@). (4.8)

Now with the use of (3.1) from Lemma 1 may be proved the following

Theorem 1. Let conditions (4.8) hold for problem (2.1), (2.2). Then the
numbers c and 19 independent of h, T and u(t) ezist such that for the solution
to problem (1.1}, (4.3) at 0 > 1+2L and 7 < 7o the following error estimate
is valid:

_max_|[u” — u(tn)lar1a) < c(Mah + Mr/T), (4.9)
where
d*y
My = ||u ey, My =M +|-— .
b= el oty Mr = Mat |5 La(tote: HY())

Remark 2. Let us note that the structure of 2 does not allow one to use
the Nitsche method [2] for obtaining estimates in Ly-norm, and we applied
the finite element estimates only in energy norms.
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5." Fictitious domain method (Neumann problem)

Let G be a rectangle and © C G. Introduce the uniform rectangular mesh
Ti,c in G such that T3 C ThG- Let us consider the scheme

fin+l _ fin _ _
BG,fLri+AGU“=F"f' n=0,...,N-1, (5.1)

where U™, F™ € £g. The Euclidean space £g of K¢ dimension corresponds
to the space H}(G) and may be presented as £ = £ X &3, where € and &;
have orders K and K respectively. The presentation £ = &, x&g corresponds
to K vertices from 2 and Ky vertices from I'. Then U € &g vectors have
the form U = (a7, )7, where @ = (&],%3)T. In (5.1) we assume that
f# = 0 and the matrix Ag have only one non-zero block A of order K,
corresponding to the bilinear form ag(u,v). And finally, Bg,r = Ig+07Bg,
where Bg matrix corresponds to the inner product in H 1(@), and Ig is the
identity matrix of order Kg. Let us remind that we consider the bilinear
form aq(u,v) coinciding with the inner product in H*(R). It means that

Ann Ap 0 An Ajo 0
Ac=| AT, Aw 0 |, Bo=| AT, Awn+Ay Ax
0 0 0 0 AL, Agp

Remark 3. The conformity between £ and H}(G) is established with the
use of the values p; = /dg(i, i) (see Section 2).

It is not difficult to note that scheme (5.1) is equivalent to the equation
in &:

sn+l _ =n _
3,3-‘—1_—"+Aa“=fﬂ, n=0,...,N-1,

and

1 -1
ﬁg+l = ﬁ; - (-0_1'12 + Agz) Ag'z(ﬁ"+l - ﬁn),

where B, = I + o7 B is the matrix of order K,

. 0 O
B=A+ . 5.2
[o AE,?,’] (52)

The positive semi-definite matrix Ag,) is defined in the previous section. In
accordance with (5.2) the left inequality from (1.3) and (1.4) is immediate at
a=0and ¥ = 1. We find the value of § from the estimate of the Rayleigh
relation
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_Buw | (0@,5)
0= e = (g

Comparmg (5.3) with (4.4), we see that the estimate of R(#) follows from
the proof of Lemma 2 with obvious modifications. Thus, we have

Bo
Vo'

where (o does not depend on h and . Now we may formulate the conver-
gence theorem.

14 (5.3)

a=0,‘ ﬂ= 7=1,

Theorem 2. Let the conditions of Theorem 1 hold. Then estimate (4.9) is
valid at 0 > 1. :

Remark 4. If p = dist(I', 0G) > 0 and p does not depend on h and r,
then the extension onto H}(G,dG) (the Dirichlet problem in G) may be
considered.

6. Fictitious domain method (Dirichlet problem)

In this section we will use the extension according to {7]. Let us consider
scheme (5.1), assuming B = Bg and A = Bg + 1Dg, € > 0, where the
matrix Dg is defined by the equality

(Dgii, v)G = (u,v)q\a V&,7 € &.

Here (-, -)g is the inner product in £5. Then we denote A, = Ig+0TA, B, =
Ig+o7B. In this section we assume that £ corresponds to H ,} (G,08G), and
B matrix corresponds to the Dirichlet problem. From positive definiteness of
B and positive semi-definiteness of Dg inequalities (1.3) immediately follow
at o =0 and 8 = 1. Then from the inequality dg(u,u) > V”“”LﬁG\ﬂ) (see
(2.3)) it follows

(A4, 8)¢ < (14 8)(B,1, B)g,

where § = 2T is any given number. The latter inequality means that v =
(1+48)~! and € = Z7. Thus, inequalities (1.3), (1.4) are valid at

a=0, =1, v=(1+67L

Let us note that, as distinguished from previous examples in the considered
case, all parameters a, 8, and v do not depend on 7. But, as will be seen,
the error estimate is the same as in Theorems 1 and 2.

For obtaining the error estimate we need some auxiliary constructions.
In HY(G) x H'(G) space, let us introduce a one-parameter family of the
bilinear forms
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a%(u, v) = ag (v, v) + -::(u, v)ena (6.1)

We need the auxiliary generalized elliptic problem to find u. € H 1(G,dG)
such that

a;(ue,v) = (9,v)¢ Vv € HY(G,8G),
where g = 0 in G \ Q. Then let u. ) be the Ritz projection of the function

u, on the subspace H}(G,8G) corresponding to the bilinear form (6.1).
Moreover, let i be the solution to the problem

aq(i,v) = (g,v)a Vve H(Q,T),

extended onto the subdomain G\ by zero. Then i, is the Ritz projection of
the function # on the subspace H}(Q,T) respectively to the inner product
in H(R), and @ = 0 in G\ Q. We use the notations @, = u, — U and
©e,h = Ue,p — Bh. Let us formulate the following statement.

Lemma 4. Let i € H*(Q). Then the following estimate is valid:

llpenll? ) < eVE(VE + b2 laliErq),
where the positive number ¢ does not depend on ¢ and h.

With the use of this lemma and inequality (3.2) of Lemma 1 we may
prove the convergence theorem.

Theorem 3. Let the conditions of Theorem 1 hold. Then the following
estimate is valid at 0 > 1446, 6 > 0:

ﬂ_ﬂllaxN”‘"'" — u(ta)llin () < c(Mh + My/7),

=Lyesey

where the numbers My, and M, are defined in Theorem 1.
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