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On the theory of algebraic multilevel
incomplete factorization methods
for the Stieltjes matrices*

Maxim Larin

Recently an algebraic multilevel incomplete factorization method for solving
large linear systems with the Stieltjes matrices has been proposed. This method
is a combination of two well-known techniques: algebraic multilevel (AMLI) and
incomplete factorization. However, the efficiency of this method strongly depends
on the choice of the relaxation parameter 6, an optimal value of which depends on
the problem to be solved. In the present paper we study this dependence theoret-
ically and propose a new method, that dynamically computes the corresponding
problem—dependence optimal value of 8, and use it to construct an approximation
of Schur’s complement as a new matrix on the lower level in the AMLI framework.

1. Introduction
This work concerns a solution to the linear system of equations
Az = b, (1.1)

where A is a sparse symmetric positive definite M-matrix or a Stieltjes
matrix of order N. To solve system (1.1) the preconditioned conjugate
gradient (PCG) method is widely used.

Recently the main topic of many papers is to get an optimal order precon-
ditioner for the solution to system (1.1), for which the rate of convergence
of a preconditioned iterative method does not depend on N, and the to-
tal computational complexity is proportional to N. In particular, algebraic
multilevel [1-4, 6] methods allow us to construct preconditioners with these
properties.

In the paper [11] an algebraic multilevel incomplete factorization method
for the Stieltjes matrices has been proposed. Its main difference from the
earlier, suggested by Axelsson and Neytcheva [4] is in the following: instead
of using an approximation of the first pivoiting block for obtaining a new
matrix on the lower level as its Schur’s complement we have propose to use
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the iterative incomplete factorization method [9] to construct an approxi-
mation of Schur’s complement as a new matrix on the lower level, which
has the structure similar to that of the original matrix. However, the choice
of the optimal value of the relaxation parameter 8 strongly depends on the
problem to be solved. Moreover, there is a high sensitivity of the rate of
convergence of PCG method with respect to the variation of 6 around f,p¢
[9, 10].

In the present paper, we study this dependence theoretically, basing on
the results for iterative incomplete factorization technique [9, 14], and pro-
pose a new method that dynamically computes the corresponding problem-
dependence value of 8, and is used in order to construct a new matrix on
the lower level in the AMLI framework.

The paper is organized as follows. In Section 2 the algorithm of con-
structing the preconditioning matrix M is described. Some conditions of
attaining an optimal order of computational complexity and an optimal
rate of convergence are given in Sections 3 and 4, respectively. The main
theoretical results are derived in Section 5.

2. Construction of the preconditioning matrix

To construct a multilevel preconditioning matrix M we usually have to define
a sequence of matrices A(*) of order ng, k =0,1,...,L 1, L, each of which
is an approximation of the Schur complement of the previous one, starting
with A©) = 4.
Let us consider a sequence of nested sets of the nodes { X} corresponding
to the sequence of matrices {A®)} such that
T p>p> 1, (2.1)
Nk+1
i.e., the number of vertices nj decreases in a geometric ratio. Note that there
are several algorithms of constructing the sequence {Xy}, for example, see
3, 5, 6, 11, 15].
Now define the sequence of matrices {A(¥)}. To do this consider the
following block matrix of the form A(*), k > 0,

k k
A(k) — [ Agl) Agz) ] }Xk \ Xk+1
= ¥ " :
AR AR |} Xen
Note that the method for definition of the sets X determines a sparsity

structure of blocks of A() matrices.
Next we consider block LU factorization of A) matrix

A® = AR o[ 1 AXTAR | 31X\ Xens
AR 1]]o sk } Xk ’

(2.2)
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where S(*+1) js the Schur complement of A(*) matrix defined by
-1
49 = A~ A% (A19) " A 2

Now we define A(*+!) matrix as the following approximation of S(+1)
matrix

et
A4 = A AT AR -0, 2

where 641 (=1 < 0k4q < 1) is a relaxation parameter, the choice of which
will be discussed in Section 5; C is an approrimation of C matrix, i.e., the
matrix, for which all the entries of C outside a chosen pattern are neglected,
and Q(¥+1) is a diagonal matrix defined from the row sum criteria '

A(H”l)e = S("“)e at 0k+l = 1, (25)
or, the same,
k k)t YN L (k
e aP()" - )4 @9
for the positive vector e = (1,1,...,1)7. Note that due to the approxima-

tion we can always make gain that the structure of a new A%+1) matrix is
similar to that of the original matrix A() by deletion and diagonal compen-
sation of undesirable off-diagonal entries, that destruct the chosen structure.
Moreover, as it has been shown in [11], this matrix is also a symmetric pos-
itive definite M-matrix. Hence, we can apply the above-defined process to
it and repeat this process until A(X) matrix, corresponding to a coarse mesh
is obtained.

Now the preconditioning matrix M is recursively defined by the sequence
of the preconditioning matrices M(*) as follows:

MWD = A0)
Fork=L-1to 0
M® = A o[ 1 (af)4aB ] 1X\ X
AR 110zt } Xeas

where Z(F+1) is an approximation of the Schur complement defined by one
of the following ways:

. _ -1
(i) Z(k+1) S(k+l)[1__ Pa,, ((M(k+l)) 13(k+1))] ,

(2.7)

'

(2.8)
. - -1
(i) z%+) = A“‘“)[I—P,,Hl ((M“"“)) 1A“°+1))] :

where P, 4 (t) is a polynomial of vi4; degree and is defined at the interval
It = [tx, %] containing all the eigenvalues of the matrix



60 M. Larin’

(M(k+1))—15(k+1} ((M(k+1))—1A(k+1))

i -I—t!:—2t
Pt = 22 =" A
T, (#4) +1

te—1i

(2.9)

where T, (t) are the Chebyshev polynomials of v degree,
Tot) =1, Ti(t)=t, T,41(t) =2tT,(t) — T,_y(t).

The choice of the degrees of polynomials is derived from the conditions of
an optimal order for a whole computational complexity and for a rate of
convergence, and will be discussed in the next sections. Moreover, all the
eigenvalues of (M(*))=1 A(¥) are real and positive.

3. Upper bounds for the polynomial degrees

Let us recall that on each level we have to solve a system with M(*) matrix,
that is a preconditioner to A(¥) matrix. By its structure it breaks up into
forward and back substitutions. More precisely, to solve a system with M(*)
matrix we have to solve two systems with the diagonal matrix A(lﬁ) and the
system with Z(*+1), that was firstly suggested in [1] and is required vj4;
solutions with M(k+1),

Now define the polynomial degrees v, as usual

Vg=1, V1=1, caay 1/#_1=1, v, =V,
Vyudl1 = 1, Vut2 = ]., ey Vo, = 1, Vu+(y+1) =V, (3 1)
Vo) = L Vr(uaypn =1, ...y vp =1,

where u (0 < p < L) is an integer parameter, r = [L/u|, and |q] is an
integer part of ¢ € R. Applying a recursive technique suggested in [4], we
obtain the standard condition on the upper bounds of polynomial degrees

v < phtl, (3.2)

under which the whole computational cost is proportional to the number of
nodes on the fine mesh.

4. Lower bounds for the polynomial degrees

An analysis of the condition number of A matrix to the M preconditioner
can be done by comparing the condition numbers on two adjacent levels.
Here we only state our main results in this respect, see [11] for.the. proof.
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First of all, for S(*+1) and A(*+1), defined by (2.3) and (2.4)-(2.6), re-
spectively, there are two positive constants Bk+1 < 1 and agy; > 1 such
that

0 < Bep1(A®Hz z) < (K ) < a1 (A%H)z, 2),

for all z € R™+1,
Now we can easily define the interval Iy, for both versions as follows:

. o (S*+Dz ) .
linf Zm, gy rt] O,

. (S(k"'l):c,z) .
[12 m,ak+2] (ll).

Teyr = [trgrs Tepa] = (4.1)

Now due to the definition of polynomials and auxiliary results in [11] we

obtain
; 1- PVI:+1 (Ek+1) (1):
F T Besr (1= Py (tagn)) (i)

Here we have only to emphasize that both x4 and Br+1 depend on the
relaxation parameter ;.

Denote by &, the condition number of the matrices M(*)™" A(®), Now by
the definition of the polynomials P,, (t) and their degrees v} as in (3.1) we
obtain the following recursive relation:

(4.2)

. ktp TVI:+#+1 (;%Eﬁf) 1
i = '
( ) " (s=1;£1 as) TVk+y+| (:t—:{";—fﬁl) - 1’
k+pt1
(i) (kﬁrl a’) e (E_::%%:) ik
1) K= B, ] k |
i Bo) T, (‘t—zﬁf) -

Now using the standard technique, that is described in [4], we obtain the
final condition on lower bounds of degrees of polynomials

E(pt+1)-1 VE
. > !
(i v (£=1Tﬁ/ﬂ H a"’)

s=(£-1)(pu+1)

gty V2
(i) v> max H -ﬁ—" .
]

{:1,...,-[13/#.] a=(¢=1)(u+1)+1
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Thus, properly choosing polynomial degrees we have an optimal rate
of convergence, i.e., the condition number of M~1A is the magnitude of
O(1). Unfortunately, the above analysis does not ensure existence of the
parameters . and v for which conditions (3.2) and (4.3) on polynomial
degrees are satisfied, because the theoretical investigation of @, and B, is
a very difficult problem, that depends on the value of 8 parameter and
the choice of the approximation pattern in (2.4). In the next section we
will discuss this subject on theoretical grounds of the iterative incomplete
factorization method.

5. Theoretical estimates for a, and g3,

First of all, we have to note that the problem for definition of the spectral

bounds of ‘A("“)_IS("“) is equal to the generalized eigenvalue problem
Ay = AMF)y, where

k) — k
A — AR o[ 1 a4 }Xk\X.H-l.
AR 110 At } Xkt

Now to obtain the upper bound on ak4; with respect to a variation of
0141 we first consider the case when 84 = 1. To do this we use the well-
known iterative incomplete factorization technique (for detail, see [9]) from
which it follows .

Amax (M®) 71 AB) < ——, (5.2)

1—T1

(5.1)

where (F)y=1 4 (%) '
T = m?x{((A“ )AL, e)‘_} <1 (5.3)

From this result we can see that the upper bound on the maximal eigenvalue
depends on 7 for which the inequality

nele > (AR 14Pe (5.4)

holds. Here I is an identical matrix and the usual componentwise relation
between real matrices (vectors) is used, i.e., A > B (a > b) if A;; > B;;
(a; > b;) for all 4, j.

Unfortunately, it is well-known that the main drawback of the iterative
incomplete factorization method is an unpredictable growing of its largest
eigenvalue, and hence 7%, see [8, 10, 17] for example.

Now let us dream a little bit. Analysing (5.4) one can find that we can
control this growing by including a “fiction” parameter w into the right-hand
side, i.e., if we assume that there is a parameter w such that w < 771 (1-7),
where 7 is an arbitrary chosen positive value, then the inequality
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(1-7)1e> w(a)14®,

is valid, and hence, )\max((M {"))*IA(")) < 471 Thus, if we find an pertur-

bation w of the action of (Ai’:})‘l when the condition 7, < 1 -1 is violated,
then the desired upper bound y~! will be satisfied.
On the other hand, we can rewrite (2.4) and (2.6) as follows:

A D AT g,
Qe = Ag:) (9k+l(Aﬁ))—l - 3k+1(Aﬁ))'l) Agg)e,

i.e., we can consider our method as the iterative incomplete factorization
method (when the relaxation parameter is equal to one) with a special choice
of approximation for the inverse first pivoting block.

Moreover, let us also recall one simple and useful result that was proven
earlier.

Lemma [14]. Let F > 0 be a strictly upper triangular matriz and P, Q be
nonnegative diagonal matrices. Let B be a matriz such that

Bz >0 and offdiag(B) = offdiag((P — E)Q(P - F)),

where z is some positive vector, offdiag(B) denotes the off-diagonal part of
B and E = FT. If Pz > Fz, then B is nonnegative definite matriz.

Now we combine these ideas and results with a help of a technique,
suggested in [14], to prove the next theorem.

Theorem 1. Let AK) be a diagonally dominant Stieltjes matriz defined by
(2.2), A®+1) be defined by (2.4) and (2.6), the preconditioning matriz M®¥)
be defined by (5.1). The parameter 7y is defined by (5.3) and, moreover, the
additional condition (1 + 041 )7 < 2 holds. Then

2
2— (1 + 0k+1)'rk )

Amax ((M®) 1 40) < 971 =

Proof. Consider the positive block-diagonal matrix W with diagonal blocks
such that

I T<1- Y5
W, = -1 . and W;=1,
Te (L—7)I otherwise

and let T be the positive block-diagonal matrix with diagonal blocks such
that
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1 otherwise and T =(1-7)I.

(1_7)-[ T <1-7,
T =
Hence, by the definitions we have that W < I, T < I and
TW =WT=(1-7)I.

Then we define a matrix B, as follows

Bi=Dit| g OHMUAW OHﬂm%ﬂﬁ
1 1 Agk)( A(kl)—l ,ilo Il o a0 T,

. 7w, ABT, Wi AR

= Di+ k (*) (k) k
APWIT, (1 - 7) AT, + ARW (A -14Y)

where D is a block-diagonal matrix with diagonal blocks such that Bye = 0.

Hence, by application of the lemma it is easy to show that B is a nonnegetive

definite matrix.
Next we define a matrix B; as follows:

1 -AY T - 1) 0 ]
B = m+[ 0 (1 = 1) AT _ T,)

where D is a block-diagonal matrix with diagonal blocks such that Bze = 0.
Moreover, we have

offdiag(AY (1 = T1)) <0 and offdiag(A*+)(I - T3)) < 0.

Hence, using the following well-known fact from the theory of the Stieltjes
matrices: “Let B be a matrix such that Bz > 0 and offdiag(B) < 0, where
z is some positive vector, then B is nonnegative definite”, it is easy to show
that B, is nonnegative definite matrix.

Now we construct the auxiliary matrix R defined by

R=N® _ya® _ B, -

and we want show its positive definiteness.
By definitions we have

k k l k k
k + k k)y - k ] k k

. [mwaAT WwiT, AY
1—
(k)WlTl (1—y) AR+, 4 A(k) Wi(A (k)) 1A(k)
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b _[a-nalu-m) 0
0 (1= 7)AG+I(T - T)
(1-7)Af (1- )AL _
(1- )A(k) Alk+1) 4 Ag};)(f - W, )(A(k)) lA(k) _ 7Ag’;)
b (1-nafdTs  @-7af) |
| 1=-m)Af)  (1-y)AkIT,
b, [A-mARI-T) 0 ]
0 (1= 7)AKHIYT — )

0 0 . .
= - D1 - Dg.
[e YAGHD 4 AD(1 - W) (A1 Af) - vAé’;’]

Now using (2.4) rewrite the second nonzero diagonal block in the following
form:

7A(k+1) + A(k) (I = Wy)( (k)) lA(k) - ‘YA%)
=5 [A(’H-l) AU‘)] + A(k)(I . 72 )(A(k))'lAgg) +

AB(T - wy) [ (A1 m AR
[ AR (AF)-14®) _ ekHQ(kH)] + AP 1wy (aB)-14® 4
AR =) |4yt - A1) 4.
Futher introduce once more the diagonal matrix (D3),2 such that
[(DS)” — AR AT T A® L AB) gy 4P IA(k)] = 0.
Note that by the defirition of W; we have
ofiding (AL (1 - W) (AT) AL - vaH AD)AY)
= —oﬂ'diag( AP 4y~ IA(")) <0

when Wj = I, and
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offdiag (Aé’i’(I — W) AF) 1 A®) _ 5 A® AT Ag;))
= (1= 7741 ) = ) oftding (AP (AT) 1)
= (1 =7)(1- 1) offdiag (A(*)( A1 A(k)) <0

when Wi = 7 1(1 — 9}, and hence, the matrix

(Dg)zg _ ‘}’A(k)(A(k)) lA(k} (k)(I W )(A{k)) 1A(k)
is noﬂnegative definite. Thus, we obtain
0 0

R=C+D ,
T o aRu - w [y - )| Al

where C' is a nonnegative block-diagonal matrix:

011 = 0, sz = (D3)22 - A(k)(A(k)) A(k) + A(k)(f . Wl)(Aﬁ))_lAgg)

and D is a diagonal matrix:

N N 0 0
D=~-Dy - Dy - - .
' ’ { 0 (D3)2g + 041 QF+Y) ]

On the other hand, from the definition of the preconditioning matrix M)
we have

0 0 .
MFB e = AFe 4 k — e,
0 (1= 8)AR [(al) - A1 ] 4

and hence

0 0
Re = (1- 7)A(")e + I .
0 (1 Biyr)AS) [(Agi)) ' (Ay;))*] AP

from what follows that
Dyse = (1-7)(AWe); > 0,

Die = (1= 7)(A¥)y + ADW: - D) |(4F) 7 - (4T 1] 4B

v

AR W= 8 [(A) 7 - (AT | e,
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Here we use the fact that A(%) is a strictly diagonally dominant matrix.

Next due to the following well-known fact from the theory of H-matrices:
“Let M(B) be defined as

[bii|  for i = j,
—lbij| for i # j,

and be a nonnegative definite matrix, then B is nonnegative definite,” the
matrix

(M(B))ij = {

Do+ AR - w3 (D) - ()] )

will be nonnegative definite if W; — Or41I > I — Wy, The latter is valid by
the assumption of the theorem. Therefore the matrix

0 0
D+ k k)y - k k
0 A~y [(al) - (AT )
is nonnegative definite. a

Corollary. To achieve the desired upper bound ¥y~! we have to set

2(1~*r)—1-

Orp1 = —
kL=

From the results of Theorem 1 we directly obtain the upper bound on
Qj1 With respect of fyy:

2
2 — (1 + 9k+1)‘rk )

a1 < (5.5)

Proceed to the lower bound on 8, with respect of a variation of 6;4;. To
do this we use the following estimate that has been obtained in [7, 13]:

1

Amin ((M(k))-lA(k)) > m,

(5.6)

where

k LR Lk
(1 = Ok41) (Qrsrez,e3) -1 AR o Al Ay (5.7)
" (A e e) + (A e) ™M | 0 AG| (AR A
where e = (e;,€3)7. It is known that in practice Agin([-]71A) is of order
O(ng'), and the order of (4¥e;, e;) + (A*+ey e9) is O(nk). Hence, the
order of Apin((M (¥))=14(®) is propartional to the sum of all perturbations.
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Now we collect the above results into

Theorem 2. Let A¥+1) be a Stieltjes matriz defined by (2.4) and (2.6), and
S(+1) be defined by (2.3). Then

1 < (SN g, z) 2
1+ C(1 = Ok41) (Qrsre,€) = (AkHDz,2) = 2= (14 Opy) 7
Jor all z € R™+1. Here C is a positive constant, independent of 04, and

Qk41, but it depends on the approzimation pattern in (2.4), and 7y, is defined
by (5.3).

Finally, using derived results we rewrite conditions (3.2) and (4.3):

éut1)-1 0 )‘/ ;

i a <wv<phtt,
( ) (E=1T,I§r/nj — (14 Ory1) 7 p

s=(e-1)(ut1) 2

1/2
e(ﬁl) gLt C(L = Ok41) (Qry1e,€) <wv<ptt!
2 — (14 Orqr)7k |

ii
(i) (£=1{-I-l-?[{/ m

from which we directly derive the condition on the value of relaxation pa-
rameter &;:

s=(§-1)(u+1)+1

. 2 —2(141)
é —{1- -1,
(D) Oy < - ( p )

1
2-arc@ume et -1 o B9
1-20(Q “2(1+E) <Okt < 1,
7 C(Qrre,€)p u

(ii)

under which conditions (3.2) and (4.3) on polynomial degrees are satisfied.

Thus, the preliminary results we have reported, demonstrate the global
relation between the parameters p and v from one hand and the relaxation
parameter 85 on the other hand. Futher we plan to consider this theoretical
result in application to the concret definitions both of the sparsity structure
in (2.4) and of the block splitting, i.e., construction of {X}}. Another way
to improve the quality of the preconditioner which is in progress now [12],
is in that we want to use a “local” (choice) relaxation matrix O, instead
of a “global” (uniform) relaxation matrix fx4q1.
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