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An optimal multilevel method
for computing the smallest eigenpair*

Maxim Larin

1. Introduction

In this paper, we are interested in computing the smallest eigenvalue and
its corresponding eigenvector of a large symmetric positive definite matrix
A, i.e., we find the first eigenpair {), u} such that

Au=2du, A=AT e R™", A>0, )
1

lull = (u,u)!/? =1,

where (u,v) = uTv. Moreover, without loss of generality we assume that
A is a simple and well separated eigenvalue since it may be derived by the
special perturbation technique [1] which will not be analyzed in this paper.
Typically, the matrix A is large and sparse. To be able to solve problem (1)
with a reasonable computing time, one must use an optimal (or nearly op-
timal) technique, i.e., the methods for which the computational complexity
grows linearly (or almost linearly) with increasing the problem size.

The usual methods for solving eigenvalue problems are often based on the
effect of excitation of the smallest eigenvalues by repeated multiplication of
the inverse matrix A™! by a vector. This applies to such popular techniques
as a subspace iteration, the Rayleigh quotient and the Lancoz method [2].
However, in the large-scale finite element problems, it is often desirable to
avoid a costly inversion or, to be more precise, the exact factorization of
the matrix A. A simple way is to use some iterative procedure instead
of the direct method for solving the system whenever it is required in the
algorithm. Note, also, that if we want to take an advantage of the Lancoz
method, i.e., the exact three-diagonal form of the Ritz matrix, we have to
take a special care in the solution method.

Today among a large body of literature published on this topic, one can
distinguish two main directions. The first one is based on the implicit ap-
plication of the multigrid methods to constructing the approximated inverse
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of A and their use as a preconditioner [3, 4], when the second one directly
applies the main multigrid ideas of the fine grid relaxation and the coarse
grid correction [5, 6]. The recent approach can also be split into two different
parts similarly to the splitting of the basic multigrid methods into V- and
F-cycles.

However, all the above approaches are treating this eigenvalue problem
as purely algebraic, hence, we can lose some valuable information about the
desired eigenpair. For example, the smallest eigenvector of the Laplace oper-
ator is very smooth, i.e., it can be well approximated on coarser grids, hence,
one can use this information in the solution process. The full multigrid pro-
cess, which takes the advantage of this smoothness, has been proposed by
Brandt, McCormick, and Ruge (7, 8]. The idea of this method is in that we
solve similar eigenvalue problems on a sequence of the finer grids using an
interpolant of the solution on each level as the initial guess for the next one
and improving it by the internal V-cycle multigrid method, i.e., suppress-
ing the high-frequency oscillations arising as a result of the interpolation
process.

In spite of the good numerical results and the fact that the method has
been proposed in the early eighties, there had been no substantial further re-
search and development in this direction for many years. It can be intuitively
motivated by the following well-known fact that a standard (geometrical)
multigrid process looses its optimal properties, when the coefficients become
anisotropic or have large jumps. To overcome these difficulties, one can use
special multigrid techniques, which successfully applied for solving a related
linear system of equations, which arises as a result of the finite element
approximations of similar elliptic boundary value problems. In particular,
semi-coarsening and algebraic multigrid techniques allow us to construct
optimal preconditioners for these boundary value problems.

The main advantages of the AMG method, which was developed by
Brandt, McCormick, Ruge and Stuben [8-10], are its robustness and its
applicability for complex geometric situations and, even, for problems with
no geometrical or continuous background at all (as long as the given matrix
satisfies certain conditions).

In the present study, we modify the above mentioned multigrid eigen-
solver using the algebraic multigrid technique, i.e., more exactly, we use the
operator dependent interpolation and the Galerkin based coarse-grid cor-
rection process to construct a new matrix on the lower level, which has a
structure similar to that of the original matrix. Moreover, its convergence
analysis has not been given in [11]. Here we prove it under some natural
assumptions on the restriction (or prolongation) matrices and the internal
multigrid method.

The paper is organized as follows. The description of the Full Alge-
braic MultiGrid method for EigenValue problems or, shortly, the FAMG-EV
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method, and its components are presented in Section 2. In Section 3, the
computational complexity and implementation details are discussed. The
proof of the convergence behaviour is presented in Section 4. In the final
section of the paper, the experimental results on standard test problems are
presented.

2. The FAMG-EV method

The idea of the FAMG-EV method based on the idea of the well-known
full multigrid approach, i.e., we find some approximate solution of a similar
problem on the coarse level and using its interpolant as the initial guess for
some internal iterative process on the next (finer) one.

2.1. Construction of {A(")}. Let Ni € {1,...,nx} be a set of indices
of all unknowns (or nodes) on the level k, k > 0, and it is partitioned into
two non-intersected subsets, e.g., N,{ C {1,...,n¢} and N C {1,...,n%}
such that Ny = N U N/ and Nf N N/ = 0, using a heuristic algorithm,
based on either the problem-dependent geometrical information, see [6, 11]
and references therein, or the matrix-dependent numerical information [7, 9,
12, 13]. This partitioning yields 2-by-2 block matrix form of A(¥), where the
first group of unknowns corresponds to the indices in N ,{ and the second one
forms a new set of indices on the next level, i.e., Nx; = N§. For the given

partitioning, coefficients for the interpolation of the value u?’), i€ N{ ,

from u(k+1) = u}k), Jj € Ng, are computed using the matrix-dependent

information. This defines a prolongation matrix P, € R™X™+1. The
detailed choice of P,f 1 used here is outline of the topic of this paper and
is addressed to in [12-14]). Then the Galerkin based coarse-grid matrix is

defined by ‘
A(k+1} — R£+1A(k)Pf+1, Rfi-l = (P’f"'l)T’ (2)

where BT is a transpose of B. As the corresponding matrix A%*+1) has usu-
ally the same properties as A*), the coursing process can be repeated until
a sufficiently coarse grid is attained, where the corresponding eigenvalue
problem can be solved by a direct or an iterative method with sufficiently
small computational cost in relation to ng.

2.2, The basic method. Now we formulate the FAMG-EV method for
solving the sequence of intermediate problems

AR y®) = a®) B = 1 k=L,L-1,...,1,0, (3)

beginning with the coarse level and including the finest level as the final
stage.
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In order to start the multilevel (recurrent) process, we have to compute
the course level approximation {),v(X)} to the desired eigenpair {}, u(%)}
by solving the coarse level c¢igenvalue problem. Due to the fact that the
order ny, of this system is sufficiently small, we can exactly compute it with
a small number of aritlimetical operations.

Now assume that we Lave an approximate solution {\,v(*+1} on the
level k +1. The transition tc the previous lcvel k starts with the interpolation
of the approxmmated eigenvector »(*+1) as follows

k) — _P]£c+1v{k+1)‘ (4)

Next, in order to eliminate high-frequency oscillations, which arise as a result
of the interpolation process (4), we apply p times the internal algebraic
multigrid method, which is based on the Full Approximation Scheme (FAS)
approach (see, for example, [6]) and use the same sequence of matrices
{A®)}. A specific nature of the internal solver will be discussed below.
Usually, one or two internal raultigrid sweeps is enough to suppress all (or
almost all) undesired frequencies in the approximated solution. Finally, the
iterate v{*) is normalized, and X is updated by computing the corresponding
Rayleigh quotient. This process is then repeated at the next finer level until
the finest level (k = 0) is reached.

Algorithm FAMG-EV:

Compute the coarse leve! approximation {A,v(%)}
fork=L-1,...,1,0
”g‘) = Pf—fq"’(k“)
fori=1,....u
o™ = VMG(k, v, A®) — AL, 0)
v® = ool
A= (AR plk), v(®)) /(v () (k)

Here VMG (k,u, A, b) denotes the internal V-cycle multigrid method applied
for solving the linear system Az = b at the level k using u as initial guess.

2.3. The internal multigrid solver. First of all, to explain the inner
solver it is necessary to fix its goal. As stated before, once the vector v(®)
has been interpolated by (4) at the level k — 1, the vector v¥-1) is a weak
approximation to u!¥=1) to be sought for. Moreover, the eigenvalue problem
is a nonlinear problem.

One possible way to solve all the above-mentioned problems is to use a
nonlinear multigrid method as the full approximation scheme (FAS) (see,



An optimal multilevel method for computing the smallest eigenpair 63

for example, [6]), which responses quickly and qualitatively eliminates the
high-frequency components of the corresponding error u(¥=1) — y(k-1),

Finally, note that the VMG method can be considered as eigenvalue
solver itself.

Algorithm VMG (v, A0 — AlLL0):

fork=1,...,L -1
for i =1,...,11 (presmoothing)
v{¥) = GSI(A® — AL, o), 7(%))
vk) = )
(k1) = RE+1,(K) + AR+ RE+14 (k) _ RE+1 (k) g (k)
vgk'ﬂ) = Ryt1y(k)
Solve AL v(L) = xp(E) 4 7(I) (coarse problem)
fork=L-1,...,1
v((]k) =v®) + PF (v — Rit1y(k))
for i = 1,...,15 (postsmoothing)
-v,gk) = GSI(A®) — /\Ik,vgf)l,r("))

'v(k) = 1]'(};)

Here GSI(A,y,b) denotes the Gauss-Seidel iteration step applied for solving
the linear system Az = b using y as initial guess.

3. Computational complexity

In order to investigate the whole computational complexity of the FAMG-EV
method we recall that the solution of the internal eigenvalue problem by the
VMG method requires the highest computational costs. By its definition,
such a solution breaks up into a set of problems with the matrices A®*) at
all the levels.

Assume that the number of nodes decreases in a geometrical ratio with
a factor p defined by

Now denoting by W the whole computational complexity of the VMG
method and applying a standard recursive technique we obtain that
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W = C(p,v1,vz,p)no = O(ng),

where C(u,v1,v3, p) is a constant depending on the user-defined parameters
only. Hence, the total computational costs of the FAMG-EV method are
optimal.

4. Convergence analysis

The convergence analysis of the method is based on the natural partitioning
of the process into the two main parts. At the first stage, we prove under
some natural assumptions that the method is convergent and at the second
stage we verify our assumptions.

Assume that

(A1) the internal multigrid method is convergent, i.e., |[M®¥)| < n < 1,
where M(¥) is the matrix operator of the VMG method, whose explicit
form will be discussed below;

(A2) ||PE,,l = ||RE,4ll € C, ie., the restriction (or prolongation) operator
is bounded;

(A3) [lu® D) — o*F D]ty < epr1y |A— Aeg1| < 8k41 € A, ie., we obtain a
sufficiently accurate solution at the previous level;

(A4) n*C? < 1, i.e., the internal multigrid method is able to eliminate the
high-frequency components of the error caused by the interpolation
process.

Theorem. Let the assumptions (A1)-(A4) be satisfied, then
M= <y Y - oW <erpa,

forallk = L —1,...,1,0, hence, the FAMG-EV method is monotonically
convergent to solution (1) if a sufficiently accurate solution on the coarse
level has been found.

Proof. To write M(*) we first consider the two level cases. As usual,
analysis of any multigrid like techniques is divided into the analysis of two
independent parts: smoothing and the coarse-grid correction. In our case,
we use a nonlinear Gauss—Seidel relaxation step as smoothing and the FAS
technique for the coarse grid-correction which can be written as follows

MK = gve [Ik _ Pf+1(A(k+1) — Mip1)”? (A(k+l)R:+l _ R:+1A(k))] sv

Now using the standard multigrid theory for the FAS method [6] we obtain
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IM®) < n <1,
which proves the assumption (A1), and moreover, if
p > 2log, C,

the assumption (A4) is fulfilled. Other assumptions are natural and are
easy satisfied by the corresponding choice of prolongation matrices and the
coarse-level solution method. a

5. Numerical results

To test the method, we first consider eigenvalue problem (1) for the small
eigenpair {A,v} which corresponds to the piecewise-linear finite element
discretization of the three-dimensional second order elliptic problems

—-Au=2Au in §, u=0 on I'p=299Q, el =1,

in the cube domain Q = [0,1]® on a uniform Cartesian mesh Tr with the
step size h.

For the present example, the AMG method yields a sequence of matrices
similar to the one for the standard (geometrical) MG method. Moreover,
we use the following generalized parameter v defined by v = vy = v5. The
number of the coarse grid iterations vy is equal to ny.

The accuracy characteristics of the computed eigenpair {An,v} to the
exact one {A,u} with respect to the parameters of the FMG method, A =
0.0072272627, N = 64 are shown in the table below.

L | M [ =l [ v
p=1

5 0.72376 - 10~2 0.10418 - 10~* 0.64687 - 102

4 0.72386 - 10~2 0.11352 - 10~* 0.69350 - 102

3 0.72489 - 1072 0.21665 . 10~* 0.10321-107!

2 0.79770 - 10~? 0.74975 - 107? 0.14544 . 10~}
p=2

5 0.72275 - 1072 0.30742 - 10°° 0.14280 - 102

4 0.72273 . 1072 0.72394 .10~7 0.67310- 103

3 0.72273 . 102 0.60540 - 10~7 0.60642 - 10~3

2 0.75394 . 10~? 0.31222 .10 0.31084 - 102

On the basis of the conducted experiments the following conclusions can
be made:

1. Comparing the values of |A— A4| with the values of [[A®)p(*) — 3, o (®)j|
for all Tables, one can see that the square root of the first one is propor-

tional to the second, hence, the results of the theorem are numerically
confirmed as well.
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2. From the first part of each Table one can see that if we use the maximal
number of possible levels, then we lose the convergence to the solution,
since the solution of the coarse eigenvalue problem does not represent
a real approximation to the smallest eigenvalue. Indeed, in this case,
on the coarse grid we have the problem for one (!) unknown only.
Naturally, it is not sufficient to compute some valuable coarse-grid
approximation to the simallest eigenvector, hence, the further work at
intermediate levels does not considerably improve this approximation.

3. Decreasing the number of levels used here results in the necessity to in-
crease v, and hence, the computational costs are also increased. Thus,
the number of levels has to be as maximal as possible. Analogously to
the standard AMLI technique, it can be recommended to use %Lm
levels, where L.y is the maximal number of possible levels.

4. Comparing the results for 4 = 1 with the corresponding results for
g = 2, in all the tables, one can see that in the second case the
accuracy of the approximated solution is better, i.e., the increasing
number of the internal VMG steps results in improving the accuracy
of the approximated eigenpair {A,,v}.

As the final conclusion, we have found that the FAMG-EV method, ap-
plied for computing the smallest eigenvalue and its eigenvector, leads to an
iterative eigensolver with an optimal order of the computational complexity
and the monotone convergence behaviour. However, the method is applied
well only for separated eigenpair {A,u}, i.e., the method does not work
properly for the problems with multiplicity eigenvalues. It seems that it is
not a strong restriction on the presented method, since the proposed tech-
nique with corresponding block type modifications can be adopted for such
problems and, also, for the problem of computing the number of smallest
eigenvalues and their eigenvectors. The future investigation will be devel-
oped in this way.
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