Bull. Nov. Comp. Center, Num. Anal., 11 (2002), 75-86
© 2002 NCC Publisher

Computation of a few smallest
eigenvalues and their eigenvectors
for large sparse SPD matrices*

M.R. Larin

The algorithm and the code for computing several eigenvalues and their corre-
sponding eigenvectors of a large sparse symmetric positive definite (SPD) matrix,
which arises as a result of grid approximations (FDM, FEM, or FVM) of multi-
dimensional boundary value problems (BVPs) are described. The preconditioned
inverse iteration (PINVIT) method is implemented by using the explicit incomplete
factorization method with conjugate gradient acceleration for solving an auxiliary
linear system of equations. The numerical results are presented and discussed.

1. Introduction

We consider the partial eigenvalue problems for computing p smallest eigen-
pairs {X;, u;} of a very large sparse SPD matrix

Aui=Aiui: ”ui"=11 0<XISA25--'SAN3 (1)

(ui:uj)zaiji i)j=15"'3Ns
where §;; is the Kronecker symbol, (u,v) = uTv and N is the order of the
matrix corresponding to finite-difference, finite element, or finite volume
(FDM, FEM, or FVM) approximations of the two- or the three-dimensional
self-adjoint elliptic BVPs [1]

aauaau(aau

a _aaza) = Aua "u”2 = 1: (zsyl z) € n‘l (2)

9z""0z Oy Yoy
where the coefficients 0., o, (and o,) are positive and piecewise smooth
functions in general. At different parts of the boundary I' = I'; UT2 U Ty
of the computational domain 2, different types of the boundary conditions

hold: Bu 8
u
ulp, =0 —| =0 — + =0. 3
|1"l ’ an rs) on au ry ()
The preconditioned inverse iteration method [2, 3] is used for solving
problem (1). To solve an auxiliary linear system of equations with the ma-
trix A, the explicit incomplete factorization method with conjugate gradient

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.

76 M.R. Larin

acceleration (EXIFCG) is used (for details see [4]). The efficiency of the
considered method is demonstrated by various numerical results for various
model BVPs.

In Section 2, we present the description of the PINVIT algorithm and its
parts. The main blocks of the code and some examples of their application

are considered in Section 3. Finally, the numerical results are presented and
discussed.

2. Description of algorithms

The idea of the considered approach for computing p smallest eigenvalues
and their corresponding eigenvectors of the sparse SPD matrix is based
on the effect of domination of the smallest eigenvalues as a result of re-
peated multiplications of the inverse matrix A~! by m-dimensional sub-
spaces, p < m < N. Unfortunately, the exact computation of A~! by direct
methods is the very memory and time consuming procedure, even by mod-
ern supercomputers. For example in case of the two-dimensional BVPs (2),
(3) the memory requirement increases as O(N log N), whereas the number
of floating-point operations grows as O(N3/2) (here we consider the nested
dissection method [4] as the most efficient direct solver). To avoid the above
problems, the preconditioning iterative technique is widely used.

One of the most robust preconditioned eigensolver is the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) method, which has
been suggested and analyzed by Knyazev [3]. The idea of the method for
computing the first eigenvalue is based on the local optimization of the
three-term reccurence by the Raylelgh—RJtz method on a three-dimensional
subspace consisting of the previous iterate v(*~1), the current iterate v(*) and
the preconditioned residual w(). The generahzatlon to the block version is
straightforward.

The basic scheme of the LOBPCG method can be described as follows:

Algorithm LOBPCG

Input: m starting vectors v(.. , v,(,g)

Devices: to compute Av and Mv for a given vector v
to compute the scalar product (v,u) for given vectors v and u

Select v() yi=1,.

for i = 0, 1,..., unt:.l convergence
for j=1,..

(1') = (A (*)’ v('))/(v(*) (_"))

t’ 06 7 4@’

J

= p;
w ’ ()

Computation of a few smallest eigenvalues and their eigenvectors ... 77

end
Use the Rayleigh-Ritz method on the trial subspace
Span{wg"), ceny wg), v(li), e ,vg), vgi—l), cen ,v,(,’;_l)}
set u}iﬂ) corresponds to j-th smallest Ritz vector,
i=1...,m

end

Output: the approximations ug-i) and 'u;-i) to the smallest eigenvalues A;

and corresponding eigenvectors u;j, j = 1,...,m.

Here we have to note that in [3], a version of the LOBPCG method
which is mathematically equivalent, but more numerically stable, has been
proposed. The latter will be implemented in our code.

In the present paper, we offer to use an iterative method for solving the
linear system of equations

Aul) =) (4)

as an “implicit” preconditioner to the matrix A inside the LOBPCG method.
Let the approximate solution of (4) be

w?’) _ Mr;i) A e = u?‘) el (5)
where e is an error and M denotes the internal preconditioned conjugate
gradient method matrix:

M =P(A), A=Uz'AL;', B=LpUs. (6)

Here Lp = U} is the lower triangular matrix of the Cholesky factoriza-
tion of matrix B, which corresponds to the explicit incomplete factorization
method, see [4]. To provide a given accuracy £ < 1 for solution of (5), the
number of internal iterations is proportional to N%/4 for the 2D model BVPs
and to N7/¢ for three-dimensional boundary value problems.

3. Program organization and data structure

The presented program package solves the partial eigenvalue problem (1),
which arises as a result of the finite element approximations of BVPs (2),
(3). The package consists of several subroutines, which generate and solve
the partial eigenvalue problem by the algorithm LOBPCG. It implements a
numerically stable variant of the Rayleigh~Ritz projection to find new eigen-
vector approximations and search directions, constructs incomplete factor-
ization preconditioner and solves an auxiliary linear system of equations by
the EXTFCG method. The programming language is Fortran-77.

The matrix A is stored in the sparse compact row-wise format [6] as
follows:

78 M.R. Larin

=]
|

the order of the matrix A,
nnz — the number of non-zero entries in the matrix A,
JA

the array of size [1:n], in which the pointers to the first entry of
each column are stored,

the array of size [1:nnz], in which all non-zero entries of the original
matrix 4 are stored column by column, each column starting with its
diagonal element, whereas the other off-diagonal entries follow their
diagonal elements in any order,

AR

IA - the array of size [1:nnz], in which the corresponding row indices of
all non-zero entries are stored.

For example, JA(i) points to the position of the diagonal entry of i-th
column within the array IA (or AR), moreover, IA(JA(i))=i.

The eigenvalues and their corresponding eigenvectors are stored as fol-
lows:
m - the number of eigenvectors to be computed,
p - the number of eigenvectors used, p < m,
EigValues — the array of size [1:p] for eigenvalue approximations,
EigVectors — the array of size [1:n,1:p] for eigenvector approximations.
Moreover, we use two user-defined parameters to compute the desired mo-
ment of process termination:
stopeps — the tolerance for accepting eigenpairs,
maxits - the maximum number of iterations to be performed.

Below we present an example of application of the package to compute
one eigenpair (p = 1), using five iteration eigenvectors (m = 5) of the three-
dimensional (idim = 3) BVP (2), (3) with 0, = 1.0, 6y = 107® and 0, =

10~2 in a cube domain on the (31 x 31 x 31) grid. Moreover, the accuracy
of eigenpairs computed is 10~® and maxits = 50.

Program TEST

m=25 ! eigenvectors used

p=1 ! eigenvectors désired
Define mesh size and values of coefficients

idim = 3 ! dimension of BVP

nx = 31 ! nodes in x-direction

ny = 31 ! nodes in y-direction

nz = 31 ! nodes in z-direction

gigmax = 1.0 ! g, in (2)

Computation of a few smallest eigenvalues and their eigenvectors . .. 79

sigmay = 1.0d-3 ! gy in (2)
sigmaz = 1.0d-2 ! o, in (2)
Matriz generation
call GENMATR(idim, nx, ny, nz, sigmax, sigmay, sigmaz,
n, nnz, AR, IA, JA) ! QOutput: matrix A
Define preconditioner
call SETUP(n, nnz, AR, IA, JA, nu, D, NE, NEIB, AU)
! Qutput: matrix B

Define eigensolver parameters
stopeps = 1.04-6
maxits = 50
Call eigensolver
call EIGPCG(n, nnz, AR, IA, JA, nu, D, NE, NEIB, AU,
m, p, EigValues, EigVectors, stopeps, maxits)
! Qutput: p eigenpairs {u;,v;}
stop

The following subroutines are called here:

GENMATR computes the original matrix A in the sparse compact column-wise
format. Note that one can simply read the original matrix from a
data file instead of its generation;

SETUP computes the preconditioner matrix B. Note that one can use any
type of the preconditioning technique, but only the output data

structure for preconditioner depends on the preconditioner and its
data structure used.

EIGPCG computes p smallest eigenpairs of the matrix A.

We present below the code of the subroutine EIGPCG with EXIFCG solver
as preconditioner. Herein we use two additional arrays:

Residuals - the array of size [1:n,1:p], in which vectors of the residual
r‘g‘) and the pseudo-residual wgf), are stored;

SearchDirections — the array of size [1:n,1:p], in which vectors of
search directions used instead of the old eigenvector approximations

v_.(,-'._l] during the Rayleigh-Ritz projection are stored.

Subroutine EIGPCG(n, nnz, AR, IA, JA, nu, D, NE, NEIB, AU,
m, p, EigValues, EigVectors, stopeps,
maxits)
Initialization
fori=1, ..., m
Residuals(:,i) = 0

80 M.R. Larin

SearchDirections(:,i) = 0
EigVectors(:,i) = random
end
call RITZ(n, nnz, AR, IA, JA, m, EigVectors, Residuals,
SearchDirections)
fori=1, ..., m
SearchDirections(:,i) = EigVectors(:,i)
end

Apply one step of the steepest descent method
nits = 1
fori=1, ..., m
call MATVEC(n, nnz, AR, IA, JA, EigVectors(:,i),
WorkVector)
EnergyNorm = ScalProd(n, EigVectors(:,i), WorkVector)
EuclidNorm = ScalProd(n, EigVectors(:,i),
EigVectors(:,i))
EigValues(i) = EnergyNorm / EuclidNorm
call RESIDUAL(n, EigVectors(:,i), EigValues(i),
WorkVector, Residuals(:,i))
call PRECOND(n, nu, D, NE, NEIB, AU, F, U,
Residuals(:,i))
end
call RITZ(n, nnz, AR, IA, JA, m, EigVectors, Residuals,
SearchDirections)

Main cycle
eps = 1.0
while((eps > stopeps) or (nits > maxits))do
fori=1, ..., m
call MATVEC(n, nnz, AR, IA, JA, EigVectors(:,i),
WorkVector)
ScalProd(n, EigVectors(:,i),
WorkVector)
ScalProd(n, EigVectors(:,i),
EigVectors(:,i))
EigValues(i) = EnergyNorm / EuclidNorm
call RESIDUAL(n, EigVectors(:,i), EigValues(i),
WorkVector, Residuals(:,i))
call PRECOND(n, nu, D, NE, NEIB, AU, F, U,
Residuals(:,i))

EnergyNorm

EuclidNorm

end
eps = Check(p, m, n, EigValues, Residuals)

Computation of a few smallest eigenvalues and their eigenvectors ... 81

call RITZ(n, nnz, AR, IA, JA, m, EigVectors,
Residuals, SearchDirections)
nits = nits + 1
end while
return

The functions and subroutines called in EIGPCG are the following:

Check(p, m, n, EigValues, Residuals) computes a new value of the
stopping estimate eps defined as follows

Jactnal 5(i) (s) .
= —— = = idual
P8 = G g O = jmex, [Residuals(iu)l
where the indices j1, 2, . .,Jp correspond to p smallest values of the
array EigValues;

ScalProd computes the scalar product of two vectors;

MATVEC(n, nnz, AR, IA, JA, VectorV, VectorW) computes the matrix-
vector product VectorW = A * VectorV;

RESIDUAL(n, VectorA, Value, VectorB, VectorC) computes the sezpy
product VectorC = VectorA - Value * VectorB;

RITZ computes m new eigenvector approximations and m new search direc-
tions by the Rayleigh-Ritz method,;

PRECOND(..., VectorInOut) computes the pseudo-residual wg-") by the
EXIFCG method. The array VectorInOut is the right-hand side as
input, and the solution as output.

Note that a call for a subroutine PRECOND depends on the preconditioner
used. For example, to call EXIFCG, we have to write down the following
subroutine.

Subroutine PRECOND(n, nu, D, NE, NEIB, AU, F, U, Vector)

eps = 1.0d-12 ! accuracy of inner iterative solution

maxits = sqrt(n) ! maximum number of inner iterations

theta = 1.0 ! compensation parameter (0 < theta < 1)

omega = 1.0 | relaxation parameter (1 < omega < 2)

per = 1.0 ! perturbation parameter (per > 1)

U = random ! set random initial guess

F = Vector ! set the right-hand side

call EXIFA(D, U, F, NE, n, NEIB, AU, nu, eps, maxits,
theta, omega, per) ! solve MatrixA # U = F

Vector = U ! put the solution in output array

return

82 M.R. Larin

A detailed description of the subroutine EXIFA and its input-output data
can be found in [4].

To apply the Rayleigh-Ritz method, we have to define two standard
subroutines:

ORTH{(n, m, EigVectors, Residuals, SearchDirections) orthnormal-
izes all input vectors by the Gramm-Schmidt methods with respect
to the energy scalar product;

JACOBI(m, RitzMatrix, RitzEigValues, RitzEigVectors) solves the
complete eigenproblem with the Ritz matrix, stored in the array
RitzMatrix of size [1:3m,1:3m], by the Jacobi method [5] and save
the computed eigenpairs in the array RitzEigValues of size [1:3m]
and RitzEigVectors of size [1:3m,1:3m].

Moreover, to compute new eigenvector approximations and search directions
we need one extra subroutine:

SORT(m, n, Values, ji, j2, ..., jm) computing m indices j;, jo, ...,
Jm of m smallest values of the array Values[1:n]l, m < n.

Now the suitable Rayleigh-Ritz method for computing new eigenvectors
approximations and new search directions can be described as follows:

Subroutine RITZ(n, nnz, AR, IA, JA, m, EigVectors,
Residuals, SearchDirections)
Orthogonalization by the Gramm-Schmidt process
call ORTH(n, m, EigVectors, Residuals, SearchDirections)

Compute Ritz matriz

fori=1, 2, ..., m
call MATVEC(n, nnz, AR, IA, JA, EigVectors(:,i),
WorkVector)

for j=1,2, ..., m
RitzMatrix(i,j) = ScalProd(n, EigVectors(:,i),
WorkVector)
RitzMatrix(i,j+m) = ScalProd(n, Residuals(:,i),
WorkVector)
RitzMatrix(i,j+2m) = ScalProd(m,
SearchDirections(:,i), WorkVector)
end :)
call MATVEC(n, nnz, AR, IA, JA, Residuals(:,i),
WorkVector)
for j=1,2, ..., m
RitzMatrix(i+m,j) = ScalProd(n, EigVectors(:,i),
WorkVector)

Computation of a few smallest eigenvalues and their eigenvectors . .. 83

RitzMatrix(i+m, j+m) = ScalProd(n, Residuals(:,i),
WorkVector)
RitzMatrix(i+m, j+2m) = ScalProd(n,
SearchDirections(:,i), WorkVector)
end’
call MATVEC(n, nnz, AR, IA, JA, SearchDirections(:,i),
WorkVector)
for j=1, 2, ..., m
RitzMatrix(i+2m,j) = ScalProd(n, EigVectors(:,i),
' WorkVector)
RitzMatrix(i+2m, j+m) = ScalProd(n, Residuals(:,i),
WorkVector)
RitzMatrix(i+2m,j+2m) = ScalProd(m,
SearchDirections(:,i), WorkVector)
end
end

Compute all eigenpairs of the Ritz matriz by the Jacobi method
call JACOBI(m, RitzMatrix, RitzEigValues, RitzEigVectors)

Compute new eigenpairs and search directions
call SORT(m, 3m, RitzEigValues, ji, j2, ---» Jjm)
for i = jp, .fz. R
for j=1, 2, ..., n
sum = 0.0
for k=1, 2, ..., m
sum = sum + Residuals(j, k) #
RitzEigVectors(k+m, i)
+ SearchDirections(j, k) *
RitzEigVectors(k+2m, i)
end
SearchDirections(j, i) = sum
for k=1, 2, ..., m
sum = sum + EigVectors(j, k) #
RitzEigVectors(k, i)
end
EigVectors(j, i) = sum
end
end
return

84 M.R. Larin

4. Numerical results

Let the matrix A correspond to the piecewise-linear finite-element discretiza-
tion of the two-(three)-dimensional BVPs (2), (3) in the square (cube) do-
main Q = [0,1] x[0,1](x[0,1]) on a uniform Cartesian mesh 7 with stepsize
h = N~1 It is well known that this problem has an (analytical) exact solu-
tion.

In Table 1, we present the results for the eigenvalue problem for the
first smallest eigenpair {A\;,u;} by the LOBPCG method beginning with
the random initial guess »(®) and continue the iterative process until the
following stopping criterion)

LTI
fira” |l

is satisfied. All calculations were performed on an IBM-SP2 in the double
precision.

Table 1. The number of iterations for LOBPCG method, m=p =1

Coefficients N

4 [8 |16] 32] 64| 128 | 266

(2D case)
oe=10p=1 4 6 6 5 5 4 4
ge=1,0,=10"" 7|10 | 8| 8| 7 7 5
oe=1,0, =102 7|15 |19 (18 | 11 | 10 | 10
0:=1,0, =107 7 21|29 |38 |26 | 26| 26

(3D case)
ge=1,0y=1,0, =1, 6 7 6 6 5 — —
oe=1,0y=10.=10"" 12 | 12 | 10 8 7| — —
o.=1,0y=10,=10"" 12 |19 { 24 | 18| 14| — | —
oe=loy=10,=10"° 11|25 [32 {34 (32| —|—

ce=l,0y=10"" 0, =100 |11 |11 | 9} 7| 7| — | —
6.=1,0,=10"10,=10"% | 18 | 22 [20 | 14 | 12 | — | —
g, =1,0,=10"",0,=10"% | 22 | 35 [44 | 31 | 290 | — | —
o:=10,=10"%,0,=10"% | 14 | 22 | 22 | 17 | 15 | — | —
ge=1,0,=10"%0,=10"" | 25 | 46 | 50 | 32 | 29 | — | —
0,=1,0,=103%¢0,=10"% | 13 | 28 | 43 [38 | 35 | — —

I

From these numerical results one can see that the number of iterations
for the LOBPCG method with the EXIF preconditioner does not depends
on N or even decrease and only slightly depend on the anisotropy ratio. It
happens due to the changing the ratio between the first and the second exact
eigenvalues, which affects on the rate of convergence, when N is increased.

Next, we solve the same eigenproblem, but with several eigenvectors
(m = p > 1) and with other stopping criteria (¢ = 1073). In Table 2, we

Computation of a few smallest eigenvalues and their eigenvectors . ..

85

Table 2. The number of iterations for the LOBPCG method and accuracy
riched, p=m=1,...,5

Parameter m

1 2 3 4 5

NIters 2 10 10 10 10
[A1 = p1]]0.3921-107% [0.2427.107% | 0.1184-10~> | 0.9524-107* | 0.7795- 104
|A2 — pal — 0.4870- 10~ % 0.4984 - 10~ % 0.2332-107%| 0.9268 - 10~ '®
|As — ps| — — 0.1964-107?| 0.7409- 104/ 0.8368 - 107 1¢
[Aa = pa] — — — 0.3129.1077 | 0.9528 - 10~ 1*
[As — ps| — — —_ — 0.5464 - 10~ 11
|Avy — p1v1]] | 0.1567-1072 | 0.1699-10~* | 0.1013-10"* | 0.1091-10~" | 0.1009-107}
|Avz — pawal| — 0.5717-107° | 0.1883-107% | 0.1380-10~7 | 0.8086 - 10~°
| Avs — psvs|| — — 0.1281-107% | 0.7658-10~" | 0.9405-1078
| Avs — pava| —_ — — 0.1213-107% | 0.3360 - 10~°
Il Avs — psvs)| — — —_ —_ 0.1571-107%

present the number of iterations with respect of the number of eigenvectors
used. Here by u; and v; we denote the approximation to the exact eigen-
values and eigenvectors, A; and u;, respectively. Correspondingly, |u; — Al
measures the difference between the exact and the computed eigenvalues
and ||Av; — piv;|| measures the quality of the approximated pair {u;,v;}.

Based on the results in Table 2, we conclude that the quality of eigenpair
approximations is uniformly improved when m is increased. On the other
hand, we have a problem with the convergence for the first eigenpair. In-
deed, the number of iterations, denoted by NIters, is always equal to the
maximum number of iterations (maxits = 10). The latter can be explained
only by the special eigenvalue property of the preconditioned matrix under
construction of which we use the equality Ae = Be, where e = {1} is a unit
vector.

References

[1] I’in V.P. Finite Difference and Finite Volume Methods for Elliptic Equations. —
Novosibirsk: ICM&MG, 2001 (in Russian).

[2] Knyazev A.V., Neymeyr K. A geometric theory for preconditioned inverse it-
eration, III: A short and sharp convergence estimate for generalized eigenvalue
problems // Linear Algebra Appl. (to appear).

[3] Knyazev A.V. Toward the optimal preconditioned eigensolver: locally optimal
block preconditioned conjugate gradient method // SIAM J. on Scientific Com-
puting. — 2001. — Vol. 23, Ne 2. — P. 517-541.

86 M.R. Larin

[4] Win V.P. Iterative Incomplete Factorization Methods. — Singapore: World Sci-
entific Publishing Co., 1992.

[5] Parlett B. The Symmetric Eigenvalue Problem. - Prentice-Hall, Inc., 1980.

[6] Pissanetzky S. Sparse Matrix Technology. — New York: Academic Press, 1984.

