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A parallel algorithm for solving the mantle flows
non-stationary problem∗

G.G. Lazareva, V.D. Korneev

Abstract. A parallel version of the program for the simulation of flows in the
Earth’s mantle has been developed. A non-stationary model of the mantle flows
describes a compressible medium with strongly varying rheological and transport
properties. It is based on the solution of the Navier–Stokes equations. The numeri-
cal model includes both explicit and implicit finite difference schemes implemented
by vector fitting. The parallel algorithm has been analyzed in detail. The parallel
algorithm provides nearly linear acceleration, despite the use of vector fitting. The
main characteristics of the parallel algorithm are presented. The total time com-
putation and the inner loop for a given accuracy of calculation varying for different
sizes of grid spaces have obtained. The inner loop is used to compute the mantle
flow velocities along the coordinate computing space. The dependence of speedup
and efficiency on the size of the grid computing space is shown. A weak depen-
dence of these parameters on a specified accuracy of the calculations is shown. The
description of the process of melting and diapirism in the lower crust is obtained
by calculations on a multiprocessor system. The structure of the floating granite
magma has been determined.

Introduction

Geodynamics is the study of the nature of the underlying forces and pro-
cesses that occur as a result of the Earth’s planetary evolution. The evolu-
tion of gravitational unstable systems in the Earth is one of the currently
central problems of geodynamics. The solution to this problem is connected
with the analysis of the processes of heat and mass transfer in the Earth’s
crust. The problem of stability or redistribution of matter and energy in the
Earth’s interior is currently being studied within the equilibrium thermo-
dynamics and non-isothermal continuum mechanics. One possible fruitful
approach is to consider the material of the Earth’s crust as a continuous
medium. Then, in the study of deformation in geological time, the conser-
vation laws for the elastic-plastic / viscous material can be used with some
restrictions. Among the endogenous mechanisms for the transport of matter
in the Earth’s crust and in the upper mantle, the movement caused by the
gravitational instability and heat fluxes plays a decisive role.
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The formation of large igneous provinces in the continental and in the
oceanic plates are associated with the lower mantle super-plumes rising from
depths of the interface of the mantle and the core [1]. The physical aspects
of the floating plume of thermal or thermal-chemical nature have been thor-
oughly investigated with physical and mathematical modeling [2, 3]. This
concept includes floating in a local region of a light, high-temperature and
low-viscous mantle material (plume) on the background of large-scale con-
vective flows. Obscure questions remain about the final stage of the evolu-
tion of diapirs, namely, how high they can climb. What is the ratio of the
lift and the drag of a viscous substance when rising to the upper levels of
the lithosphere. Thus, the mechanism of transporting the magma diapir in
the most viscous and cold part of the mantle lithosphere requires a detailed
study.

Geodynamics exploits the data of geology, geochemistry and geophysics,
as well as data of mathematical and physical modeling of the underlying
processes. Mathematical modeling is of great concern in geodynamics, al-
lowing the check of the bright ideas and making fundamental discoveries.
The development of mathematical modeling due to the progress of comput-
ing technology, which allows one to take into account the ever increasing
set of interrelated physical processes in a wide range of scales. However,
a powerful computer technology is only one of the needs of the numerical
simulation. Another, a much more important requirement is the availability
of suitable numerical algorithms and codes to be capable of efficient op-
erations on available computers to study the physical problems of interest
with a good accuracy and the most flexible approach to the introduction of
the new physical processes. The simulation of the mantle flows has some
specific features. Therefore, not all well-established methods are applicable
to this type of problems. The current level of modeling involves multi-
dimensional and high-resolution models. This brings about the need in a
multi-processor computing technology. Expansion of models leads to the
new requirements for the methods used for solutions. This contributes to
their further development. In contrast to the conventional approach, based
on the Boussinesq approximation, the model in question is based on solv-
ing a system of complete classical Navier–Stokes equations. They describe
the dynamics of a weakly compressible flow with variable density and vis-
cosity. Nonlinear equations of the model make necessary to use methods
of solutions based on the computer-aided technologies. A parallel version
of the algorithm is designed to obtain more accurate solutions. It is im-
plement in Supercomputing Center Information Technology Center (ITC)
NSU (www.nusc.ru). The computer system with shared memory is selected
with allowance for a specific features of a numerical model, characterized
by a large number of vector-runs and does not require more than a dozen
processors for parallelization.
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1. Mathematical model

Historically, the first and simple model of the mantle convection is a clas-
sical model of a viscous incompressible fluid based on the Stokes equations
system [4]. Further, an approximate system of equations describing the
convection of fluids and gases (called the Boussinesq approximation) was
formulated. This model is wide spread in the numerical modeling of geody-
namic processes, the convective currents environment [5–8]. A comprehen-
sive analysis of methods for the numerical integration of the Stokes and the
Boussinesq equations is found in [9,10]. To calculate the steady flows, more
efficient seems to use methods based on the introduction of an artificial com-
pressibility [11]. An example of the successful use of this approach to the
simulation of the essential three-dimensional processes in the Earth’s mantle
is given in [12]. In the Boussinesq approximation, the density changes in the
flow are partially taken into account. In this case, density is dependent only
on the temperature when determining the mass force. The refusal from some
assumptions does not affect the basis of a viscous incompressible fluid, such
as the constancy of thermal and transport properties of the gas, assumptions
about a negligible role of the processes of dissipation of mechanical energy
of a flow and pressure forces. Obviously, a modification of the model of an
incompressible fluid cannot be used to describe flows with a significantly
varying density due to the use of the incompressibility equations.

Let us consider a system of equations that describes the dynamics of a
viscous liquid that is closed by the equation of state:
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The equation of state is a direct result of the expression for the density
ρ = ρ0(1− αT + β(p− p0)):

p = p|y=0 +
1

β

( ρ

ρ|y=0
+ αT − 1

)
,

where ρ is the density, ~u = (ux, uy) is the velocity vector, T is the tempera-
ture, and p is the pressure, η is the viscosity, g is the acceleration of free fall,
k is the thermal diffusivity, ρt=0 and pt=0 are the density and the pressure
at the initial moment of time, respectively.

Characteristic values of the variable are: L0 = 3 · 104 m, ρ0 = 2.8 ·
103 kg/m3, T0 = 550 ◦C, p0 = η0k0/L

2
0 Pa, k = 10−6 m2/s, t0 = L0/k,

u0 = L0/t0. The parameters α = 3 · 10−5 1/◦C, β = 10−11 1/Pa are used in
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the equation of state. To determine the viscosity of the model the Arrhenius

equation is employed: η = A·exp
(

E

RnT

)
, where A = 1.2·1017, E = 2.16·104,

n = 2.6 are experimental data, R is a universal gas constant. In the given
statement of the problem, the values of the viscosity coefficient are within
the interval η = 1018÷1020 Pa/s, therefore, Pr =

η0
ρ0k0

= 3.6 ·1020÷3.6 ·1022,

Ra =
αgρ0θL3

0
η0k0

= 2.7 · 102 ÷ 2.7 · 104, where θ is a characteristic temperature
difference. In this model, the normal crust with exponential distribution of
radioactive sources of heat is considered.

Choosing a model of a weakly compressible liquid is defined as desire to
use a more complete model of the process with the density jumps caused by
the melting phase transitions, and the ability to create a numerical technol-
ogy of solution employing well-tested finite difference schemes. The criterion
of applicability of the classical Oberbeck–Boussinesq model [13] to describe

the thermal gravitational convection is known. If the parameter ξ =
gL2

0ρ0
η0k0

is of order of less than or equal to one, the Oberbeck–Boussinesq model is
not applicable. The value of ξ characterizes a relative contribution of the
buoyancy factors and volume expansion of a fluid when forming the velocity
field. In this class of problems the viscosity coefficient can vary in the limit
η = 1014 ÷ 1028 Pa/s, the parameter ξ being from 105 and 10−9.

It is well known that the numerical integration of the full Navier–Stokes
equations is a very complex and time-consuming computing task. It re-
quires the development of special finite difference schemes and numerical
algorithms. A significant difference of the mantle convection problems is
the Prandtl numbers of order 1020, the nonlinear equation of state, different
scales of various processes strongly (by tens orders of magnitude) varying
viscosities. These features create additional difficulties in the numerical
implementation of the model taking into account the compressibility of a
medium. However, it is now possible to carry out the numerical simulation
of the most detailed models of the convection currents in view of strongly
varying rheological and transport properties such as viscosity, density and
thermal conductivity.

2. A parallel algorithm

In the case of low characteristic speeds of geodynamic processes (a few
centimeters per million years) such problems are characterized by a high

speed of sound and a small Mach number: c =

√
∂p

∂ρ
=

√
1

βρ0
= 104 m/s,

M =
v0
c

= 10−13.

Geodynamics examines very slow flows, therefore in theory the Mach
number, in contrast to other parts of seismology and geophysics, was not
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used. The Mach number that was formally evaluated, one can refer to
the experience in the field of computing significantly subsonic flows. It is
known [14] that a decrease in the characteristic Mach number of the flow
below 0.1 causes slowing down the convergence of iterations with respect to
time in the method of determination and deterioration of the accuracy of
the solution obtained.

The slowdown of the convergence of the method of determination is ex-
plained by the stiffness (increasing for M → 0) of the dynamics equations of
a compressible gas, defined as the ratio of a maximum and a minimum eigen-
values of the Jacobi matrix of convective flows vectors. A detailed study of
this effect with the use of difference schemes, grid and flow parameters was
carried out in [15]. In order to overcome problems with convergence, the
method of preconditioning was proposed [14,16]. At the same time, Sagittar-
ius and Shur [17] successfully applied the “compressibility scaling method”
to calculate the viscous compressible gas flows for M � 1. A similar ap-
proach was proposed for the numerical simulation of flows and heat transfer
in liquids with parameters close to the thermodynamic critical point [18].
Thus, the approaches similar to the method of preconditioning, but adapted
to this class of problems are widely used.

To scale the elements of solving the system of equations, the equations
are reduced to a dimensionless form with dimensionless parameters of the

current K̂ =
k0η0
αρ0θ

, β̂ =
βk0η0
L2

0

, α̂ = αT0, p̂ = p|y=0/p0, ρ̂ = ρ|y=0/ρ0 [19]. All

the parameters of the flow are presented in the form of f = f0f
′, where f ′ is a

physical characteristic, f0, f
′ are its characteristic and dimensionless values,

respectively. To solve the problem, we introduce non-stationary fictitious
time iterations [20] for the equations of motion. Following the ideology of
the considered approaches let us multiply the fictitious time derivative by a
factor kpr having the value of order of the Prandtl number. At each real-
time step, iterations for the equations of motion are performed with respect
to fictitious time. The modified equations will not be stiff thus ensuring the
convergence to a desired solution at each at real-time step. The resulting
system of equations in dimensionless variables has the form:
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where
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and the tensor of viscous stresses is
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Numerical integration of the full Naiver-Stokes is an extremely complex
and time-consuming task. The peculiarity of the numerical implementation
of the full Naiver-Stokes equations for flows with small Mach numbers is in
a significant difference between the two characteristic significantly subsonic
time scales: the characteristic time of the convection processes t = L/v
and the characteristic time of the acoustic perturbation τ = L/(vc). When
using explicit finite difference schemes (according to the Courant stability
condition) the time step can not exceed the characteristic time of the most
rapid process of transmission of acoustic disturbances. Therefore, the use of
explicit finite difference schemes is completely unjustified, except for certain
specific tasks. The numerical model is implemented on a regular rectangular
grid in the Cartesian coordinate system. The system of equations of motion
(the inner cycle) is implemented by an implicit finite difference method of
stabilizing corrections of first order with respect to time and space. In the
inner cycle iterations are carried out with a fictitious time to ensure the
accuracy of ε. An explicit upwind scheme is used for the implementation of
the continuity equation and temperature in the outer cycle with a real time.
The system of equations is solved for the deviation from the hydrostatic
pressure, the initial density distribution being defined by the Runge–Kutta
4th order accuracy.

A parallel algorithm of the problem in question is implemented on the
computer system with shared memory (IVC NSU). The algorithm is im-
plemented in Fortran using the parallelization algorithms software in the
general field of OpenMP memory. The computational domain is defined by
a rectangle in the plane (X, Y). In the computational domain, a uniform
rectangular grid of (iDimX, iDimY) size is given. The values of each param-
eter of the problem are identified in the grid. They are stored in 15 arrays
of (iDimX, iDimY) size. The flow parameters: density, temperature and
pressure are calculated by explicit schemes of the through calculation (with-
out distinguishing features) on a 5-point pattern “cross”. Speeds along the
coordinates are calculated by implicit schemes on a 5-point pattern “cross”.

Parallelization of the algorithm is in extracting parts (subdomains) of the
computational domain and the distribution of these sub-regions by threads.
The subregion distributed computation for each thread is assigned to it in
sub-domains. The computational domain is conditionally “cut” into strips
along either the coordinates X or Y. They are statically allocated by means
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of OpenMP threads for calculations with this program. Note that points of
the adjacent bands, which are necessary to calculate the pattern “cross”, are
available to all threads, since all the data are in the shared memory. The
flow parameters: density, temperature, pressure are calculated by explicit
schemes with splitting along the spatial directions [21]. These strips are
calculated along one of the coordinates. The speed parameters are calculated
in the inner loop of the program by an implicit scheme by the sweep method.
Their calculation is carried out along both coordinates. Arrays to store the
marching factors are set in the local memory of each thread, thus allowing
carrying out the reverse flow passage (in the sweep algorithm) for each row
or column of the strip calculated by them.

3. Acceleration and efficiency

In the development of a parallel algorithm it is important to know the po-
tential of accelerating calculations and overheads associated with organi-
zation of parallelization of flows, their interaction and synchronization. In
addition, it is important to know the performance metrics of a parallel al-
gorithm on a computer system that allows one to compare it with other
parallel algorithms. Also, it is needed to evaluate the possibility of paral-
lel implementation on computer systems with shared memory with a large
number of processor cores.

The computing node cluster of the ITC NSU is used as a computing
system with a common field of memory for the numerical implementation
of the algorithm. The computing nodes of the cluster consist of two 4-core
Intel Xeon processors 5355, running at 2.66 GHz and 16 GB of the total
RAM.

Figure 1 presents graphs of the computation of the total time as well as
of the inner loop associated with computing speeds. The graphs are given
for the size of a net space of 5,000 × 1,000 for the two values of accuracy
ε = 10−3 and ε = 10−4. The graphs show the following. First, that a
high precision of calculations considerably increases the computation time.
Second, the time of computing the inner loop takes a considerable share of
the total calculation time. On one and on eight threads, the total time of
calculation, depending on the values of ε increases, approximately, 3.3 times.

Figure 2 presents graphs of the total calculation time for the two sizes of
the grid spaces 5,000× 1,000 and 10,000× 2,000 with the accuracy of calcu-
lation ε = 10−3. The graphs show that the dimensions of space considerably
increase the time of calculation: on one thread in 5.4 times, and on eight
threads in 9.4 times.

The acceleration factor Up on R threads is calculated as: Up =
T1

Tp
,

where T1 is the time of calculating the problem on a single thread, Tp is
the time of calculating the problem on P threads. Figure 3 presents graphs
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Figure 1. The total time of compu-
tation (triangles) and the time needed
for computing the inner cycle (squares)
when ε = 10−3 and 10−4 for 2, 4, and 8
streams

Figure 2. The total time of computa-
tion for 5,000 × 1,000 grid spaces (cir-
cles) and 10,000× 2,000 (squares) when
ε = 10−3

Figure 3. Acceleration of computation
for 5,000×1,000 grid spaces (circles) and
10,000 × 2,000 (squares) for 2, 4, and 8
threads

Figure 4. Efficiency of computation for
5,000 × 1,000 grid spaces (circles) and
10,000 × 2,000 (squares) for 2, 4, and 8
threads

of the calculation acceleration for 2, 4 and 8 threads for different sizes of
grid computing space, specified by the number of grid points along the
coordinates calculated with with the accuracy of ε = 10−3. For ε = 10−4,
the graphs differ only slightly from those shown above, hence the accuracy
of calculating the speed ε has a little effect on the acceleration rate. The
graphs show that the size of the grid space has a significant effect on the
acceleration of a parallel algorithm towards its reduction with increasing the
size of the grid space.

The efficiency ratio Fp on P threads is calculated as: Fp =
Tpc

Tpc + Tps
,

where Tpc is the time of “pure” calculation of the problem (excluding any
other costs) on P threads, Tps is the total time spent on interaction and
synchronization of P threads. The calculations were performed on the same
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thread as the calculation of a sequential program. In the script of the pro-
gram run it is indicated that the calculations are carried out on a unit only
by a single thread. In all the cases, the program was invoked exclusively
on a unit (exclusively means that resources on a unit are given exclusively
to the program). This is due to the prevention of interference from other
user tasks or from other cores of this unit that are not calculated at a given
moment. This provides a greater accuracy of testing.

Figure 4 shows the effectiveness of the algorithm calculated with the
accuracy of ε = 10−3. For ε = 10−4 the graphs differ only slightly from those
presented above. The graphs show that the size of the grid space similar
to acceleration has a significant influence on the performance of a parallel
algorithm, its size decreasing with increasing the number of computational
grid nodes.

4. Solution of the model problem

The objective of this paper is to construct a numerical model to describe
the gravitational unstable processes in the lithospheric mantle of the ancient
cratons. The gravitational instability is considered to be a result of melting
of the base of the lithosphere by heating its area of the anomalous mantle.
Based on the model developed we will judge of the main regularities of the
mantle diapirism of the basic or ultrabasic magma. Magma rises through
the “cold” high-viscosity lithosphere. The considered model [22] is based on
geological, petrological and geophysical data, characterizing the structure
and composition of the Siberian platform. The geometry of the model de-
scribes the structure of the lithosphere of the Siberian craton: 45-km-long
crust and 155-km mantle lithosphere are considered. The total thickness of
the lithosphere is 200 km, its value is assumed to be constant. The rectan-
gular area of the Earth’s crust 200 km in depth and 1000 km in width is
considered. The free surface with a constant value of zero temperature, the
density 2.8 · 103 kg/m and pressure 105 Pa are set at the upper boundary of
the area. The lateral boundaries of the area are isolated for the heat transfer
and for the release of a substance. The area of 100 km in width is set at
the lower boundary. This area is constantly heated up to the temperature
of 1450 ◦C, i.e., the process of “underplating” is considered. On the rest of
part the lower boundary the temperature of 1350 ◦C is set.

A cycle consisting of the diapir rise to a maximum height of the pour
point and at the termination of the heat source, or the establishment of a
steady-state convection with a constant action of the heat source, has been
simulated in [23].

Thus, the size of the grid space has a major influence on the speedup
and efficiency of the parallel algorithm of the problem, while the calculation
accuracy of the rate ε has a very weak effect. A detailed analysis of the
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parallel algorithm has shown that it is possible to obtain the speedup to be
close to linear for the grid spaces of a medium size, about (5,000× 1,000) in
spite of using the vector factorization.
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