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The calculation of heating various geometries of
cracks formed under pulsed heat load∗

A.G. Maksimova, G.G. Lazareva, A.S. Arakcheev

Abstract. This paper presents a computer-aided simulation to calculate the heat-
ing of a tungsten plate with different crack geometries forming in the process of
a pulsed thermal load. The results of model testing, numerical calculations and
comparison with experimental data are presented. The dependence of the surface
temperature on the location of cracks is shown.

1. Introduction

Currently, studying the effect of heat on the walls of the tokamak reactor is
of interest. It is very important that the heat has time to go deep into the
walls to the cooling tubes. The highest load is shown by impulse loads, so
it is very important to study them in the sequel.

The results of heating a tungsten plate by the action of a powerful elec-
tron beam were obtained on the experimental VETA stand [1] created in
BINP. It was revealed that cracks parallel to the plate surface have the
strongest influence on the heat propagation. The formation of the cracks is
associated with the thermal expansion of a material.

2. Statement of the problem

To calculate the temperature in a two-dimensional area containing cracks,
the Fourier equation in the Cartesian coordinate system is solved:

c(T )ρ(T )
∂T

∂t
=

∂

∂x

(
λ(T )

∂T

∂x

)
+

∂

∂y

(
λ(T )

∂T

∂y

)
, (1)

where T is the temperature, c(T ) is the specific heat capacity, ρ(T ) is the
density (Figure 1).

At the upper border of the domain, the heat flux (n,∇T )|γ =
W (x)

λ
,

where W (x) is the power of the heat flux, λ(T ) is the thermal conductivity.
At the side and bottom borders (n,∇T )|γ = 0.
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Figure 1. Graphs of the temperature dependence of density (a), thermal conduc-
tivity (b), and specific heat (c)

The crack geometry is defined at the initial time and is considered to
be unchanged throughout the calculation. This is due to peculiarities of
the formulation of the practical problem. Cracks are defined similarly to
the boundaries of the region with the boundary condition (n,∇T )|γ = 0. If
necessary, one can add the heat from the vertical cracks near to the surface
of the plate. We consider that the heat does not pass through cracks as at
characteristic times of calculations it can be neglected.

It is more convenient to proceed in non-dimensional variables, for exam-
ple, as follows:
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The numerical values of the parameters are given in the table:

Parameter Typical value Units

x, y 10−2 mm

t 1 µs
T 103 K

c 107 (W · µs)/(kg ·K)

ρ 10−5 kg/mm3

W 103 W/mm2

λ 10−2 W/(mm ·K)

Equation (1) describes the Stefan problem with a free boundary [2].
The free boundary is given by discontinuous coefficients and discontinuous
functions in the boundary condition describing heating [3]. These functions
have discontinuities or lose smoothness at the melting point Tm = 3695 K.
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3. Method of solution

The numerical implementation is based on the Douglas–Rachford scheme
and the run method [4]. A uniform rectangular grid of nodes (xi, yj) is
introduced in the two-dimensional solution domain

xi = (i− 1)hx, yj = (j − 1)hy, i = 1, . . . , N, j = 1, . . . ,M,

where hx, hy are the grid steps, N and M are the number of grid nodes in
x and y directions: hx = xmax/(N − 1), hy = ymax/(M − 1).

Introducing the grid functions by the rule fnij = f(xi, yj , t
n), we obtain
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4. Specifying the crack geometries

When heated cracks are of different geometries, let us consider the most
common cases.

A simple case is a symmetric crack. The axis Y is along the line of
symmetry of cracks and directed into the interior of the plate. The axis X
is directed along the surface (Figure 2a). Calculations are carried out only
in a quarter of the space. The conditions on such a crack are set as follows:

Tni,jc = Tni,jc−1, Tni,jc+1 = Tni,jc+2, 1 ≤ i ≤ ic,

where ic, jc is the number of the node on which the crack passes.
If the vertical part of the crack is asymmetrically relative to the horizon-

tal (Figure 2b), we set crack conditions

Tni,jc = Tni,jc−1, Tni,jc+1 = Tni,jc+2, 1 ≤ i ≤ ic,
Tnic,j = Tnic−1,j , Tnic+1,j = Tnic+2,j , 1 ≤ j ≤ jc.
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Figure 2. The crack schemes: symmetric (a), asymmetric (b), and inclined (c)

An inclined crack (Figure 2c) is set in a more complex way. We must
construct an approximation on a rectangular grid. Due to the need in taking
into account the boundary conditions on the upper heated surface of the
plate on the axis OX, the crack is vertical at the first three nodes. The first
and second nodes participate in the boundary condition at the surface, and
the second and third–– on the condition for the crack. Corner nodes are just
two conditions: both on the vertical and on horizontal cracks.

5. Testing

A program in the Fortran language has been developed to conduct computa-
tional experiments on a pulsed tungsten heated with parallel crack surfaces.
The program was tested on the quasi-one-dimensional analytical text [5]
with the solution

T = T0 +
W
√
t

2Cpρ
√
χπ

,

where Cp is the thermal capacity, χ is the thermal diffusivity.
Implementation of the model with data from non-stationary and non-

linear coefficients have been investigated with various τ and h. The calcu-
lation is carried out in 0.5 × 0.5 mm2 domain at a constant heating power
W = 5 · 103 W/mm2. Figure 3 shows graphs of the surface temperature at
the time instant 200 µs from the beginning of laser heating. When the grid
and space steps are reduced, a relative error decreases.

The program for the complete formulation of the problem with nonlinear
coefficients was tested for compliance with the calculated heating rate known
from experimental data [6]. It should be noted that this formulation of
the problem is characterized by a low heating depth (microns) against a
relatively large heated surface (mm). Therefore, it is multi-scale problem. In
the case of the model expansion, the inclusion of additional equations in the
model, there will inevitably be a need for parallelization on multiprocessor
computer systems.
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Figure 3. The surface temperature graphs
for the grid parameters: h = 1, τ = 2−4

(point-dash), h = 0.5, τ = 2−5 (points),
h = 0.25, τ = 2−6 (dash), h = 0.125, τ = 2−7

(straight line)

6. Results of numerical calculations

The developed program allows one to calculate the distribution of heat in the
tungsten plate taking into account the heterogeneity of different geometries
(Figure 4). The graphs show the temperature distributions at the cross-
section of the tungsten plate heated during 200 µs at a constant power
W = 4 · 103 W/mm2 for the case of a symmetric crack, during 300 µs
at a constant power W = 5 · 103 W/mm2 for the case of an asymmetric
crack, during 70 µs at a constant power W = 3 · 103 W/mm2 for the case
of an inclined crack. The presence of microcracks increases the surface
temperature, including the temperature above the melting point. Further
development of the model may predict the location of cracks inside the
material according to the temperature at the heated surface.

The results of computational experiments match the measurement data
(Figure 5). The calculation parameters [7]: the duration of exposure of
the beam 186 µs, the time of measurement 200 µs from the beginning of

a b

Figure 4. The temperature graphs
around cracks: symmetric (a), asymmet-
ric (b), and inclined (c) c
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Figure 5. Distribution of the cross-sectional temperature (a fragment around the
crack) (a) and temperature at the surface (b): experimental data (solid line) and
calculated results (dotted line)

beam exposure time is 10 µs, the left crack depth of about 0.12 mm, the left
crack length of about 0.2 mm, the right crack depth of about 0.15 mm, and
the right crack length of about 0.145 mm. The heating was assumed to be
uniform W = 3 · 103 W/mm2.
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