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A comparative analysis of kinetically consistent
schemes with several grid methods for solving

gas-dynamics problems∗

G.G. Lazareva, A.G. Maksimova

Abstract. The equations of gas dynamics are an integral part of numerical models
of the atmospheric dynamics used for research into variations of climate and anthro-
pogenic changes in the environment. Various modifications of the discrete kinetic
models describing a single-particle distribution function are reviewed and tested.
A comparison of test solutions with the explicit solutions is made. A counterexam-
ple showing the necessity of considering the sequence of derivation of equations is
given.

1. Kinetically consistent difference schemes

Let us consider a non-trivial approach to the creation of computational al-
gorithms for solving the gas dynamics equations. At first, the difference
approximation of the Boltzmann equation is constructed [1] to create ki-
netically consistent difference schemes (KCDS). Then, this approximation
is averaged in the velocity of molecules, and difference equations for the
gas dynamics parameters are derived. In the conventional methods of solv-
ing the gas dynamics equations, the sequence of actions is different. At
first, the Boltzmann equation is averaged in the velocity of molecules using
assumptions about the distribution function and the Navier–Stokes or the
Euler equations are obtained. Only after that, a difference approximation
is constructed.

This approach is originated on the following assumptions [2]. At the
moment of time tn, the one-particle distribution function is a constant at
every segment [xj , xj+1] and coincides with the Maxwell one. The gas dy-
namics parameters ρj , uj , pj are also stable at every segment [xj , xj+1].
During time τ = tn+1 − tn the gas makes a collisionless expansion. At ev-
ery moment tn, an instant maxwellization of the distribution function takes
place. Note that the one-particle Maxwell distribution function is adequate
for gas dynamics processes and corresponds to the collisions of molecules in
the gas. In this approach, the cumbersome scheme with the error integral
arising after averaging in speed is obtained:
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where ρ is gas density, h is the spatial step, T is the temperature, p =
ρRT is the gas pressure, u is the gas velocity, γ is the adiabatic index,

ε =
RT

γ − 1
is the internal energy, E =

ρu2

2
+ ρε is the full energy. The
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.

For the approximation of the first derivative, the central difference aẋ =
ai+1 − ai−1

2h
is used. For the approximation of the second derivative, the

difference approximation ax̄x =
ai+1 − 2ai + ai−1

2h2 is applied.

A quasi-gasdynamics system of equations

A quasi-gasdynamics system of equations (QGS) is one of the forms of KCDS
differential recording [3]. The QGS is often used as the basis of computa-
tional algorithms due to its relative simplicity:
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where τc ≈
h

2c
is the kinetic time during which molecules cross the cell

boundaries. Note that the system of gas dynamics equations is of the hy-
perbolic type, and the QGS is of the parabolic type [4].

The upwind scheme

We consider the first-order upwind scheme [5] on a uniform grid with differ-
ent versions of the right-hand-side function F = (f1, f2, f3)T :
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, h and τ are spatial and temporal steps, respectively.

The right-hand side F = (0, 0, 0)T defines the upwind-leap-frog scheme.
The upwind scheme right-hand side for KCDS (1) is the following:
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The upwind scheme right-hand side for QGS (2) is the following:
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The Steger–Warming scheme

Similarly, we consider the Steger–Warming scheme [6] with three versions of
the right-hand side:
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Here F = (0, 0, 0)T defines the Steger–Warming scheme, F = (f1, f2, f3)T

from (4) and (5) define the Steger–Warming scheme for KCDS (1) and
QGS (2).

The test results

The Riemann problem has a known exact solution [7]. Let us consider the
one-dimensional inviscid gas in the tube. Let a point x = x0 be a damper
that separates the gas in the tube. Gas on the left of the damper has the
parameters ρ1, u1, p1 and on the right of the damper –– ρ2, u2, p2. For
definiteness, we consider that p1 > p2. At the time t = 0, the damper is
removed.

The initial data: ρ1 = 1, u1 = 0, p1 = 1, ρ2 = 0.125, u2 = 0, p2 = 0.1.
We have made some tests showing the error density for different temporal
and spatial steps at the time moment t = 1.

a b

Figure 1. The error in the mean-square norm of the density calculation by the
upwind scheme (the square symbol), with KCDS (the circle symbol), and with QGS
(the triangle symbol): (a) different spatial steps, τ = 0.001; (b) different temporal
steps, h = 0.01
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a b

Figure 2. The error in the mean-square norm of the density calculation by the
Steger–Warming scheme (the square symbol), with KCDS (the circle symbol), and
with QGS (the triangle symbol): (a) different spatial steps, τ = 0.001; (b) different
temporal steps, h = 0.01

Graph in Figure 1 show that the scheme with KCDS is more accurate
than the original upwind scheme (3). The scheme with QGS has advantages
for small spatial steps and requires improving the order of convergence with
respect to time. Note that the QGS of the second order of convergence with
respect to time with an addition of the second temporal derivative returns
the parabolic type of the solved system of equations [4].

Graphs in Figure 2 show that applying the right-hand side F from (4),
(5) lowers the accuracy of the original Steger–Warming scheme (6). This
is because the Steger–Warming scheme is a convective transport of gas-
dynamics quantities in characteristics. This approach is not consistent with
the construction method of KCDS and QGS. This counterexample provides
a method of developing discrete kinetic models through the improvement of
the approximation of the transfer in the Boltzmann equation.

The experimental analysis of the rate of the convergence for the disper-
sion of a sampling was carried out. The order of accuracy P(h) is determined
for a certain value of f considering the sequential reduction of step h and
using the Runge rule [8]:

P(h) = lim
h→0

log2

f(2h)− f(h)

f(h)− f(h/2)
.

Graphs in Figure 3 show that the rate of convergence doesn’t have the
first order of accuracy on the example of the law of conservation of mass:
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a b

Figure 3. The rate of convergence of the density at different space steps,
τ = 0.0005, t2 = 0.4, t1 = 0.3, x1 = −0.6, x2 = −0.2: (a) calculation by the up-
wind scheme (the square symbol), with KCDS (the circle symbol), and with QGS
(the triangle symbol); (b) calculation by the Steger–Warming scheme (the square
symbol), with KCDS (the circle symbol), and with QGS (the triangle symbol)

On discontinuous solutions, plots of the approximation don’t have the
first order of accuracy [8]. The order of accuracy depends on the calcula-
tion domain. The definition of “accuracy order for discontinuous solutions”
must be associated with the domain where these solutions are determined.
The reason of the fractional order of restructuring of the conservation laws
after restructuring the solutions is in the areas of collisions between the
shock waves in the vicinity of the points where the new rarefaction wave has
occurred [9].

Conclusion

The paper considered the derivation of equations with KCDS and QGS.
This approach is used for the upwind-leap-frog and the Steger–Warming
schemes. A number of tests for the Riemann problem on the condensing
grids were performed. Comparison of results of the numerical experiments
with the exact solution has shown the high accuracy of the upwind-leap-
frog scheme for KCDS and QGS. Also, the advantages and disadvantages of
KCDS and QGS were shown. A counterexample constructed with the use of
the Steger–Warming scheme shows the necessity of considering the sequence
of derivation of equations with KCDS and QGS.
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