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Calculation of a uniform gas flow from the heated
tungsten plate surface∗

G.G. Lazareva, N.E. Ivashin, A.G. Maksimova,
V.A. Popov, A.V. Lobanov, A.S. Arakcheev

Abstract. At INP SB RAS, various mechanisms for the erosion of tungsten sam-
ples during the pulsed heating were studied. Data were obtained that made it
possible to analyze the experimental results of the surface temperature dynamics
taking into account the cooling due to the vaporation in vacuum. A numerical
model was developed for the effect of a powerful pulsed electron beam on tungsten,
which includes the Stefan problem for determining the temperature distribution in
a sample and the system of gas dynamics equations. The gas dynamics system is
implemented by the two methods of first order of accuracy: the upwind scheme
and Belotserkovsky’s coarse particle method. For the program verification, a test
solution of the gas decay was used. In the process of calculating the problem in a
complete statement, an analysis of the residual was carried out.

Introduction

At the BETA experimental bench created in the INP SB RAS, the results
of heating a tungsten target with a powerful submillisecond electron beam
were obtained [1]. Mathematical modeling of the tungsten erosion will give
required and important results for the development of the ITER and other
experimental thermonuclear reactors [2]. A diverter is needed to remove the
outer layers of the plasma cord. Part of the particles from the walls of the
vacuum chamber inevitably falls into the cord. This is undesirable for the
two reasons. The plasma is cooled by the emission of impurities, and the
reactor wall is overheated by additional radiation. It is necessary to show
that this material absorbs the heat well, it is insignifcantly sprayed by par-
ticles from the plasma, it accumulates some hydrogen, does not break down
mechanically, does not melt and does not spray when the pulsed effects of
powerful particles and energy flows are expected in a tokamak. Mathemat-
ical modeling, as replacement for an expensive physical experiment with a
computational experiment, is especially relevant for studying the thermo-
physical properties of materials in extreme conditions. The tungsten evap-
oration model is based on solving the gas dynamics equations with complex
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boundary conditions. This paper deals with the model calculation of the
gas flow from the sample surface using two finite difference schemes.

1. Problem definition

A tungsten plate located in vacuum is heated by a powerful laser pulse.
Evaporation of metal begins at temperatures above 4,000 degrees Kelvin. A
one-dimensional gas flow is simulated from the right boundary with a given
linear temperature increase, a given density and velocity flow –– to the left
boundary, where the gas freely exits. The mathematical model of the gas
flow from the sample surface is based on the solution of the system of gas
dynamics equations [5]:
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where ρ is the gas density, u is the gas velocity, P is the gas pressure, T is the
temperature, R is the gas constant, M is the molar mass. As an equation
of state, the relation for an ideal gas is chosen.

This system of equations can be rewritten in the divergent form. The
equation for temperature was replaced with the equation

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+
∂(u(ρu) + P )

∂x
= 0,

∂ρE

∂t
+
∂(u((ρu) + P ))

∂x
= 0,

ρT =
2

3

( R
M

)−1(
(ρE)− ρu2

2

)
,

u =
(ρu)

ρ
, T =

(ρT )

ρ
, P =

R

M
(ρT ).

(2)

Systems (1) and (2) of equations are equivalent. The internal energy ε
according to the Mendeleev–Clapeyron law for a monatomic ideal gas is

representable in the form ε =
2

3

M

R
T .

To solve the difference problem, we turn to dimensionless quantities. The
numerical values for system (1) of the parameters are given in the table:
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Parameter Typical value Units

r0 10−1 mm
t0 10−4 µs
T0 103 K
R 8.31 · 10−6 mm2 · kg/µs2 ·mol ·K
M 0.18384 kg/mol
a1 26.191
a2 8.39713 K
P0 10−9 kg/mm · µs2

2. Numerical simulation

We use a uniform rectangular grid for the spatial variables (ri, zk). The
required flow parameters are comparable to mesh analogues. The required
flow parameters ρ, ρu, u, ρE, ρT , P , T are comparable to the mesh ana-
logues:
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To carry out the model calculations, we assume that the temperature of the
sample linearly increases. The initial data used are the following:
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As a result of the computational experiments [3, 4], two satisfactory
types of boundary conditions for the rate of emission of tungsten vapor
were obtained: the Dirichlet condition with the use of the estimate
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or the Neumann homogeneous condition giving a rougher estimate. For the
density, it is necessary to use the Dirichlet condition with the use of the
estimate
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For the solution, we will use the upwind scheme [6] for system (1) and
Belotserkovsky’s coarse particle method [7] to solve the divergent system (2).
A simplest stable scheme of the first order of accuracy is a scheme with
directional differences depending on the speed sign:
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To solve the equation in the divergent form (3), we will use a coarse particle
method. According to this method, the initial system of the gas dynam-
ics equations can be divided into two stages based on splitting to physical
processes. At the Euler phase, gas is considered to be stationary. The
system of equations of the Euler phase is obtained from the original sys-
tem of equations if in them the divergent terms of the mass flux density,
momentum component, and total energy are omitted. This system of equa-
tions describes the process of changing the gas parameters in an arbitrary
flow domain due to the action of the pressure forces, as well as due to the
potential difference:
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The system of equations of the Lagrangian phase contains divergent
terms and is responsible for the advective transfer of the gas-dynamic quan-
tities. At the Lagrangian phase of the scheme, the transport effects are
calculated that take into account the exchange between cells when they are
re-arranged to the previous Eulerian grid. For writing the finite difference
scheme of the Eulerian phase, we can use the central differences or linearize
the equations of the Eulerian phase and approximate the derivatives using
the pressure and velocity values obtained from the exact solution of the
linearized problem.

In the Lagrange phase, gas is transferred to the neighboring cell with
flows. The part moved in the directions x of the physical quantity can be
written as

∣∣τu
h

∣∣. The mass flow is determined by the formulas of the first

order of accuracy
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During the time τ , we calculate the mass flows ∆Mn through the bound-
aries of the Euler cells. A fraction moved along the axis of the physical
quantity fn+1
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In one time step, the stored values are transferred to no more than only
one cell. At each time step, the solution of the equations of continuity,
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motion, and total energy is reduced to the consistent implementation of the
Euler and Lagrangian phases. As the initial condition for the Eulerian phase,
the value of functions from the previous time is taken, for the Lagrangian
phase, the initial condition is the solution from the Eulerian phase. A mod-
ification of this method allows one to accurately describe the expansion of
gas to vacuum [8, 9]. The gas-dynamic model is verified on a series of the
Toro analytical tests [6].

3. Simulation results

The residual was calculated for τ = 10−11 and h = 10−4 with a sequential
increase in the number of points. The norms in C and in L2 were applied to
evaluate the result of the calculations. Figure 1 presents the results for the

Figure 1. The results for the upwind scheme
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Figure 2. The results for the “Coarse particle” method

upwind scheme, Figure 2 –– for the “Coarse particle” method. The residual
slightly increases during the solution due to the accumulation of errors, but
does not exceed the error of the schemes.

Figure 3 shows the temperature graph for directional and Belotserkov-
sky’s differences. A thermal wave propagates into vacuum. The presence of a
“hump” at the beginning of the wave is due to the density and temperature of
the technical vacuum and its temperature in the installation. The magnitude
of the “hump” is proportional to the magnitude of this density. Ideally, the
gas must be calculated using the two-phase model. Now we assume that a
highly rarefied gas in the installation and the tungsten vapors are one and
the same substance with the same parameters. The specific total energy
smoothly propagates into vacuum along with the mass of gas.
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Figure 3. The temperature graph is for directional differences (black),
Belotserkovsky’s (red)

Conclusion

For the calculation of the tungsten evaporation dynamics under the influence
of thermal pulsed loads, we have developed a model and a program. The gas
dynamics system is implemented by the two methods of the first order of
accuracy: the upwind scheme and Belotserkovsky’s coarse particle method.
For the program verification, a test solution of decay of the gas was used.
In the process of calculating the problem in the complete statement, an
analysis of the residual was carried out. The residual slightly increases in
the course of the solution due to the accumulation of errors, but does not
exceed the error of the schemes.
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