Bull. Nov. Comyp. Center, Num. Anal., 12 (2003), 73-80
© 2003 NCC Publisher

The program SIMODE for solution
of ODE systems with singular matrix
multiplying the derivative*

Al Levykin

The paper presents an algorithm for the numerical solution of the initial value
problems for systems of ordinary differential equations with singular matrix mul-
tiplying the derivative. The algorithm uses the (m, k) scheme of the Rosenbrock
type with time-lagging derivative matrices, and the adaptive step size control for
the global error. Some examples of solution of test problems are presented.

The routine SIMODE finds an approximation to the solution of a sys-
tem of differential equations A(y)y' = f(y), on [0, Zend], ¥ given, with a
solution-dependent, singular square matrix A. Non-autonomous problems
may also be included formally adding the equation for the independent vari-
able, z' = 1. We assume that A(y) and f(y) have sufficiently many bounded
derivatives, and that the initial value is consistent:

¢ f(y(0)).is in the range of A(y(0));
¢ A(y) has constant rank in neighbourhood of the solution y(z);

o the matrix pencil {4 + AB}, with B = @AWW 5 index of
nilpotency 1 along the solution.

Thus, the conditions guarantee the existence of a unique, smooth solution
y(=) [1].
The routine uses the (m, k) formulas [2, 3]

m m
Tnil = ZTn + Zﬂikzi: Yn+l = Yn + El-‘z'kyia

i=1 i=1
where the internal stages are carried out by
Dpkri = nAa(kpiog) + 3 aijkzi) + (0 — DhA(kyi_a) + Y Yijkaj),
JeJ; JjeJ;

_(kn 'T(kz(:—l) + z Qij z:) (1- ﬂ)h(ky(;—-—l) + Z 7:Jkyj .
JEJ; J€J;

kyi

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.



74 A.L Levykin

Here a, pui, Bij, oij, and v;; are parameters defining the stability and the
accuracy properties, h is the integration step, A;, A2 are matrices approxi-
mating the derivatives

OF (zy,, yn)
Oy

_ BF(sz Yn)

Fny = 5z y

y Pz D, = Ay 4+ ahA,,

where F(zpn,yn) = A(Zn,Yn)2n — f(Tn,¥n), 2n is the approximation of y' at
the point z,,.

The algorithm involves embedded pair of schemes of second and third
orders using the time-lagging derivative matrices and attempts to keep the
global error proportional to a user-specified tolerance. "This routine is effi-
cient for stiff systems with index 1 or index 0.

At every step once decomposition of a matrix D, is evaluated, the func-
tion of a right side of a differential problem is 3 times calculated, backward
in the Gauss method is 5 times executed.

SIMODE (Double precision)

Purpose Solves a first order differential-algebraic system of equations,
A(y)y' = f(y), using the Rosenbrock-type methods.

Usage CALL SIMODE(MS, N, T, TK, H, HM, EP, TR, Y, YPR, WK,
IWK, GCN, DGCN)

Arguments

MS — the integer work array of length 11.

MS(1) - an indicator to the first call; 0 means the first call for the problem
(initialization will be done); 1 means that the first call is performed
(Input/Output).

MS(2) - an indicator specifying the task to be performed; 0 means “take
one step only and return”; 1 means the normal computation of
output values of Y(T) at T = TK (Input).

MS(3) - an indicator responsible for the method calculating the matrix of
partial derivatives of g(t,y,%'). At MS(3) = 0, the matrix is nu-
merically calculated using the DGCN, at MS(3) = 1 (Input).

MS(4) - not used.

MS(5) - this indicator is used to signal a singular or poorly conditioned par-
tial derivative matrix encountered during the factor phase. If the

value is nonzero, the routine returns control to the user. Default
value is 0 (Output).



The program SIMODE ... 75

MS(6) — the number of steps taken for the problem so far (Input/Qutput).
MS(7) - the number of g evaluations for the problem so far (Input/Output).
MS(8) — the number of the derivative matrix evaluations for the problem

so far (Input/Output).

MS(9) - the number of the matrix LU decompositions for the problem so

far (Input/Output).

MS(10) — the number of inverse motions in the Gauss method (Input/Out-

put).

MS(11) — the number of repeated calculations of the solution for the prob-

N
T

TK

EP

YPR

WK
IWK

lem so far (Input/Output).
the number of differential equations (Input).

an independent variable. In input, T is used only for the first call,
as the initial point of integration. In output, after each call, T is
the value at which a computed solution Y is evaluated if MS(2) = 0.
Or T = TK if MS(2) = 1 (Input/Output).

the end point of integration (Input).

the step size to be attempted at the first step. The default value
is determined by the solver. In output, H takes on the value of the
step predicted (Input/Output).

the minimum absolute step size allowed. If the step predicted is
less than HM, H = HM, the computational accuracy is not controlled.
The default value is determined by the solver (HM = 10~12) (Input).

a relative error tolerance parameter (Input).

an array of dependent variables. In the first call, Y should contain
initial values. In output, after each call, Y contains the computed
solution evaluated at T if MS(2) = 0. Or Y(T) = Y(TK) if MS(2) =1
(Input/Output).

— an array of size N containing the derivative values %'. In the first

call, YPR should contain initial values y'(tp) so that g(to,y,y') =
0. In output, after each call, YPR contains a derivative of the
computed solution evaluated at T if MS(2) = 0, or YPR(T) = YPR(TK)
if MS(2) = 1 (Input/Output).

the real work array of length 15N + 3N2.
the integer work array of length N.

a parameter. If |[Y(i)| > TR, the relative error EP will be controlled
in Y(i). If [Y(i)| < TR, the absolute error EP*TR will be controlled
in Y(i). The default value is determined by the solver (TR = 1.0)
(Input).



76

GCN

DGCN

A.L Levykin

— the user-supplied subroutine to evaluate the function g(¢,y,y').

The usage is CALL GCN(N, T, Y, YPR, GVAL), where GCN has the
form

subroutine gen(n, t, y, ypr, gval)
double precision t, y, ypr, gval
dimension y(n), ypr(n), gval(n)

cccccccccccccccccc

Here N, T, Y, and YPR are the input parameters, and the array GVAL
of size N containing the function values g(t,y,y’) is the output.
Y, YPR, and GVAL are arrays of length N. GCN must be declared
EXTERNAL in the calling program.

the name of a user-supplied subroutine to compute partial deriva-
tives of g(t,y,y'). It is to have the form:

subroutine dgen(n, t, y, ypr, pdy, pdypr, pdt)
double precision t, y, ypr, pdy, pdypr, pdt
dimension y(n), ypr(n), pdy(n, n), pdyrp(n, n), pdt(n)

------------------
nnnnnnnnnnnnnnnnnn
------------------

Here N, T, Y, and YPR are input, and the arrays PDY, PDYPR, PDT
are to be loaded with nonzero partial derivatives in the output:
PDY is dg/0y, PDYPR is dg/dy', and PDT is dg/dt. DGCN should be
declared EXTERNAL in the calling program.

Example 1. The following is a simple test problem (the Van der Pol equa-
tion, see Example 1 for the routine DASPG from the IMSF library), with
the coding needed for its solution by SIMODE. The test problem is solved as
differential-algebraic system and has n = 2 equations:



The program SIMODE ... 77

an=y2—y =0,
92=1—-y)y2—e(y1 +95) =0

on the interval from ¢t = 0 to ¢; = 26, with the initial conditions y; = 2,
y2 = —2/3, y} = y2, ¥5 = 0 for the value e = 0.2.

double precision t, tk, h, hm, ep, tr, y, ypr, wk

external dgcen, gen

dimension y(2), ypr(2), wk(42), iwk(2), ms(11)

data ms/0, 0, 0, O, 0, O, O, O, O, 0, O/
910 format(8x,’t’,10x,’y1’,10x,’y2’,10x, ’yprl1’,8x, *ypr2’)
920 format(/,1x,’Number of RP calls with SIMODE = ', i10)
930 format(ix,’Number of DRP calls with SIMODE = ’, i10)
940 format(2x,5d12.4)

n=2

tr = 1.4-0
ep = 1.d-3
hm = 1.4-12

t =0.40

tk = 26.d0

h =1.4-5
y(1) = 2.40
y(2) = -2.d0 / 3.d0
ypr(1) = y(2)
ypr(2) = 0.d0
write(*,910)

write(*,940) t, y, ypr
1 call simode(ms, n, t, tk, h, hm, ep, tr, y, ypr, wk,
& iwk ,gcn, dgen)

if(t .1t. tk) goto 1

write(*, 940) t, y, ypr

write(*, 920) ms(7)

write(*, 930) ms(8)

stop

end

subroutine gen(n, ¢, y, ypr, g)

double precision g, ypr, t, y, eps

dimension y(2), ypr(2), g(2)

data eps /.2d0/

g(1) = y(2) - ypr(1)

g(2) = (1.0d0 - y(1)**2)*y(2) - eps*(y(1) + ypr(2))
return

end



78 A.I Levykin

subroutine dgen(n, t, y, ypr, dgy, dgypr, dgt)
double precision t, y, ypr, dgy, dgypr, dgt, eps
dimension y(1), ypr(1), dgy(n, 1), dgypr(n, 1), dgt(1)
data eps /.2d0/

dgy(1, 2) = 1.d0

dgy(2, 1) = -eps - 2.d0 * y(1) * y(2)

dgy(2, 2) = 1.d0 - y(1) #** 2

dgypr(1, 1) = -1.d0

dgypr(2, 2) = -eps

return

end

Output

t y1 y2 yprl ypr2
.0000D+00  .2000D+01 -.6667D+00 -.6667D+00  .0000D+00
.2600D+02  .1483D+01 -.2341D+00 -.2343D+00 -.8274D-01

416
82

Number of RP calls with SIMODE
Number of DRP calls with SIMODE

Example 2. The SIMODE is used to solve the so-called pendelum problem
(see Example 2 for the routine DASPG from the IMSF library). The problem

has n = 5 equations:
' n=y-9 =0,
@2=y—-y=0,
g3 = —v1ys — my3 =0,
94 = —yays — mg —my; =0,
95 = m(y3 +v3) —mgyz — Pys =0

and is solved on the interval from ¢ = 0 to m, with the initial conditions
nn=Ly=01i=2..5y =01=1,...,5. All parameters of the
pendelum are the same as for the corresponding parameters for Example 2
for the routine DASPG. In this example, we use the option MS(3)=1 for the

numerical computation of partial derivatives.

double precision t, tk, h, hm, ep, tr, y, ypr, wk,
& maxten, tmax
external dgcn, gen
dimension y(5), ypr(5), wk(150), iwk(5), ms(11)
data ms/0, 0, 1, 0, 0, O, O, 0, 0, 0, O/
data pi/3.14159265359d0/

910 format(1ix,5e12.5)



The program SIMODE ... 79

920 format(ix, ’Number of steps are fulfilled by SIMODE = ?,
£i10)

930 format(ix, ’Extreme string tension of’, d10.3,
&’ (1b/s*#2)’, 2x,’occurred at time’, d10.3, /)

n=25

tr = 1.4-0
ep = 1.d-3
tk = pi

hm = 1.4-12
h =1.4-5

t = 0.d0
y(1) = 2.40

maxten = 0.d0
1 call simode(ms, n, t, tk, h, hm, ep, tr, y, ypr, vk,
& iwk, gen, dgen) )

if (dabs(maxten) .1lt. dabs(y(5))) then

maxten = y(5)

tmax = ¢

end if

if(t .1t. tk) goto 1

maxten = maxten * 2.20462d0

write(*, 930) maxten, tmax

write(*, 920) ms(6)

stop

-end

subroutine gen(n, t, y, ypr, g)

double precision g, ypr, t, y, meterl, masskg, lensq,
& mg, grav

dimension y(n), ypr(5), g(5)

logical first

data first /.true./

data grav /9.80665d40/

if (first) go to 20

10 g(1) = y(3) - ypr(1)
g(2) = y(4) - ypr(2)
g(3) = -y(1)*y(5) - masskg*ypr(3)
g(4) = -y(2)*y(5) - masskg+ypr(4) -mg
g(5) = masskg * (y(3)**2 + y(4)**2) - mg*y(2) -
& lensqg*y(5)
return



80 A.L Levykin

20 masskg = 98.d0 * .4536d0
meterl = 6.5d0 * .3048d0
lensq = meterl ** 2
mg = masskg * grav
first = .false.
go to 10
end

subroutine dgen(n, t, y, ypr, pdy, pdypr, pdt )
double precision t, y, ypr, dx, dy, dt

dimension y(1), ypr(1), pdy(n, 1), pdypr(n, 1), pdt(1)
return

end

Output

Extreme string tension of .153D+04 (1b/s#%2)
occurred at time .251D+01 ,
The number of steps are fulfilled by SIMODE = 47

References

(1] Haier E., Wanner G. Solving ordinary differentials equations II. — Springer-
Verlag, 1996.

[2] Levykin AL, Novikov E.A. One-step method of the three order accuracy for
solving implicit systems of the ordinary differential equations // Modelirovanie
v Mekhanike. — 1989. — Vol. 3, Ne 4. - P. 90-101 (in Russian).

[3] Levykin A.L, Novikov E.A. A class of (m, k)-methods for solving impiicit sys-
tems // Soviet Math. Dokl. ~ 1996. — Vol. 348, Ne 4. — P. 442-445 (in Russian).



