Bull. Nov. Comp. Center, Num. Anal., 11 (2002), 87-94
© 2002 NCC Publisher

- The program NODEI for solution
of differential-algebraic ODE systems*

AL Levykin

The paper presents an algorithm for the numerical solution of the initial value
problems for implicit systems of ordinary differential equations (ODE). The algo-
rithm uses the Rosenbrock-type scheme with time-lagging derivative matrices, and
the adaptive step size control for the global error. Some examples of solution of
test problems are presented.

The routine NODEI finds an approximation to the solution of a system of
differential-algebraic equations g(t,y,y’) = 0, with initial data given for y
and y'. The routine uses the Rosenbrock-type formulas [1-3]

m m
Tnil = Ty + Zp«kma Yn+l = Yn + z#ikvit
i=1

i=1

where the internal stages are carried out by

Dykei = nha(koaoy + Y oijka;) + (n — DhAi(koi1) + Y Wijkes),

JEJ; Jjed; '
1
kyi = —h(kze = nka(i-1) + Y cijkei) — (1 — n)h(kyi-1) + 3 wiikys)-
@ JES Jjed;

Here, a, pi, Bij, cij, and 7;; are the parameters defining the stability and
accuracy properties, h is the integration step, A;, A, are matrices approxi-
mating the derivatives '

- 3F(-"’n:yn)

— aF(th yﬂ)
Oy ’

Foy 8z

Foe , Dn= Az +ah4;.

The algorithm involves two schemes of second and third orders using
the time-lagging derivative matrices and attempts to keep the global error
proportional to a user-specified tolerance. This routine is efficient for stiff
systems with index 1 or index 0. The usage of the routine NODEI is explained
in detail below.

*Supported by the Russian Foundation for Basic Research under Grant 01-07-90367.

88 A.IL Levykin

NODEI (Double precision)

Purpose Solves a first order differential-algebraic system of equations,
g(t,y,9') = 0, using the Rosenbrock-type methods.

Usage CALL NODEI(MS, N, T, TK, H, HM, EP, TR, Y, YPR, WK,
IWK, GCN, DGCN)

Arguments

MS — the integer work array of length 11.

MS(1) - an indicator to the first call; 0 means the first call for the problem
(initialization will be done); 1 means that the first call is performed
(Input/Output). _

MS(2) - an indicator specifying the task to be performed; 0 means “take
one step only and return”; 1 means the normal computation of
output values of Y(T) at T = TK (Input).

MS(3) - an indicator responsible for the method calculating the matrix of
partial derivatives of g(t,y,y'). At MS(3) = 0, the matrix is nu-
merically calculated using the DGCN, at MS(3) = 1 (Input).

MS(4) — not used.

MS(5) - this indicator is used to signal a singular or poorly conditioned par-
tial derivative matrix encountered during the factor phase. If the
value is nonzero, the routine returns control to the user. Default
value is 0 (OQutput).

MS(6) — the number of steps taken for the problem so far (Input/Qutput).

MS(7) - the number of g evaluations for the problem so far (Input/Output).

MS(8) - the number of the derivative matrix evaluations for the problem
so far (Input/Output).

MS(9) — the number of the matrix LU decompositions for the problem so
far (Input/Output).

MS(10) - the number of inverse motions in the Gauss method (Input/Out-
put).

MS(11) - the number of the repeated calculations of the solution for the
problem so far (Input/Output).

N - the number of differential equations (Input).

T ~ an independent variable. In input, T is used only for the first call,
as the initial point of integration. In output, after each call, T is
the value at which a computed solution Y is evaluated if MS(2) = 0.
Or T = TK if MS(2) = 1 (Input/Output).

The program NODEI for solution of differential-algebraic ODE systems 89

TK — the end point of integration (Input).

H — the step size to be attempted at the first step. The default value
is determined by the solver. In output H takes on the value of the
step predicted (Input/Output).

HM - the minimum absolute step size allowed. If the step predicted is less
than HM, H = HM, computational accuracy is not controlled. The
default value is determined by the solver (HM = 10~12) (Input).

EP - a relative error tolerance parameter (Input).

Y - an array of dependent variables. In the first call, Y should contain
initial values. In output, after each call, Y contains the computed
solution evaluated at T if MS(2) = 0. Or Y(T) = Y(TK) if MS(2) =1
(Input/Output).

YPR - the array of size N containing derivative values y'. In the first call,
YPR should contain initial values y'(¢9) so that g(tp,y,y') = 0. In
output, after each call, YPR contains a derivative of the computed
solution evaluated at T if MS(2) = 0. Or YPR(T) = YPR(TK) if
Ms(2) =1 (Input/Output).

WK - the real work array of length 15N + 3N2.
IWK - the integer work array of length N.

TR - aparameter. If |Y(i)| > TR, the relative error EP will be controlled
in Y(i). If |Y(i)| < TR, the absolute error EP*TR will be controlled
in Y(i). The default value is determined by the solver (TR = 1.0)
(Input).

GCN - the user-supplied subroutine to evaluate the function g(t,y,7').
The usage is CALL GCN(N, T, Y, YPR, GVAL), where GCN has the
form

subroutine gen(n, t, y, ypr, gval)
double precision t, y, ypr, gval
dimension y(n), ypr(n), gval(n)

Here N, T, Y, and YPR are the input parameters, and the array GVAL
of size N containing the function values g(t,y,¥') is the output.
Y, YPR, and GVAL are arrays of length N. GCN must be declared
EXTERNAL in the calling program.

90

DGCN

A.L Levykin

— the name of the user-supplied subroutine to compute partial

derivatives of g(¢,y,y'). It is to have the form:

subroutine dgen(n, ¢, y, ypr, pdy, pdypr, pdt)
double precision t, y, ypr, pdy, pdypr, pdt
dimension y(n), ypr(n), pdy(n, n), pdyrp(n, n), pdt(an)

nnnnnnnnnnnnnnnnnn

Here N, T, Y, and YPR are input, and the arrays PDY, PDYPR, PDT
are to be loaded with nonzero partial derivatives in output: PDY is
dg/08y, PDYPR is 8g/8y', and PDT is 8g/dt. DGCN should be declared
EXTERNAL in the calling program.

Example 1. The following is a simple example problem (the Van der Pol
equation, see Example 1 for the routine DASPG from the IMSF library), with
the coding needed for its solution by NODEI. The test problem is solved as
differential-algebraic system and has n = 2 equations:

a=v2—-y =0,
g2=01—-ydy —e(y1+y5) =0

on the interval from ¢ = 0 to t; = 26, with the initial conditions y; = 2,
y2 = —2/3, ¥} = y2, y5 = 0 for the value e = 0.2.

910
920
9230
940

double precision t, tk, h, hm, ep, tr, y, ypr, wk
external dgcn, gen

dimension y(2), ypr(2), wk(42), iwk(2), ms(11)

data ms/0, 0, 0, 0, 0, 0, O, O, O, 0, 0O/
format(8x,’t?,10x,’y1’,10x,’y2?,10x, *yprl’,8x, ’ypr2’)
format (/,1x, ’Number of RP calls with NODEI = *, i10)
format (ix, ’Number of DRP calls with NODEI = ?, ii0)
format (2x,5d12.4)

n

tr =

ep
hm

=2

n
ol

n

The program NODEI for solution of differential-algebraic ODE systems 91

t = 0.d40

tk = 26.d0
h=1.4-5

y(1) = 2.d0

y(2) = -2.d40 / 3.4d0
ypr(1) = y(2)
ypr(2) = 0.40

write(*,910)

write(*,940) t, y, ypr
1 call nodei(ms, n, t, tk, h, hm, ep, tr, y, ypr, wk, iwk,
& gen, dgen)

if(t .1t. tk) goto 1

write(*, 940) t, y, ypr

write(*, 920) ms(7)

write(*, 930) ms(8)

stop

end -

subroutine gen(n, t, y, ypr, g)

double precision g, ypr, t, y, eps

dimension y(2), ypr(2), g(2)

data eps /.2d0/

g(1) = y(2) - ypr(1)

g(2) = (1.0d0 - y(1)*%2)*y(2) - eps*(y(1) + ypr(2))
return '

end

subroutine dgen(n, t, y, ypr, dgy, dgypr, dgt)

double precision t, y, ypr, dgy, dgypr, dgt, eps
dimension y(1), ypr(1), dgy(n, 1), dgypr(n, 1), dgt(1)
data eps /.2d0/

dgy(1, 2) = 1.d0
dgy(2, 1) = -eps - 2.d0 * y(1) * y(2)
dgy(2, 2) = 1.d0 - y(1) ** 2

dgypr(1, 1) = -1.d0
dgypr(2, 2) = -eps
return

end

Output

t yi y2 ypri ypr2
.0000D+00 .2000D+01 -.6667D+00 -.6667D+00 .0000D+00
.2600D+02 .1480D+01 -.2345D+00 -.2345D+00 -.8278D-01

92 A.L Levykin

Number of RP calls with NODEI = 438
Number of DRP calls with NODEI 86

Example 2. The NODEI is used to solve the so-called pendelum problem
(see Example 2 for the routine DASPG from the IMSF library). The problem
has n = 5 equations:

n=ys—# =0,

g2=ys—y2=0,

93 = —y1ys —my3 =0, ¢y

94 = —Y2ys — mg — myy = 0,

95 = m(y3 + y3) —mgys — Pys = 0
and is solved on the interval from ¢ = 0 to =, with the initial conditions
y1=Ly=0,1=2,...,5 9y =0,1i=1,...,5. All parameters of the
pendelum are the same as for the corresponding parameters for Example 2

for the routine DASPG. In this example, we use the option MS(3)=1 for the
numerical computation of partial derivatives.

double precision t, tk, h, hm, ep, tr, y, ypr, wk,
& maxten, tmax
external dgcn, gen
dimension y(5), ypr(5), wk(150), iwk(5), ms(11)
data ms/0, 0, 1, 0, 0, 0, 0, O, O, O, 0O/
data pi/3.14156926535940/
910 format(1x,5e12.5)
920 format(1x,’Number of steps are fulfilled by NODEI = 7,
£i10)
930 format(ix, ’Extreme string tension of’, d10.3,
&’ (1b/s**2)?, 2x,’occurred at time’, d10.3, /)

n=2>5

tr = 1.4-0
ep = 1.4-3
tk = pi

hm = 1.d4-12
h=1.4-6

t = 0.d40
y(1) = 2.40

maxten = 0.d0
1 call nodei(ms, n, t, tk, h, hm, ep, tr, y, ypr, vk, iwk,
& gcn, dgen)

if (dabs(maxten) .1t. dabs(y(5))) then

maxten = y(5)

tmax = t

The program NODEI for solution of differential-algebraic ODE systems 93

end if

if(t .1t. tk) goto 1
maxten = maxten * 2,20462d40
write(*, 930) maxten, tmax
write(*, 920) ms(6)

stop

end

subroutine gen(m, t, y, ypr, g)

double precision g, ypr, t, y, meterl, masskg, lensq,
& mg, grav

dimension y(n), ypr(5), g(5)

logical first

data first /.true./

data grav /9.80665d0/

if (first) go to 20

10 g(1) = y(3) - ypr(1)
g(2) = y(4) - ypr(2)
g(3) = -y(1)*y(5) - masskg*ypr(3)

g(4) = -y(2)*y(5) - masskg+ypr(4) -mg

g(5) = masskg * (y(3)#+2 + y(4)**2) - mgry(2) -
& lensq#*y(5)

return

20 masskg = 98.d0 * .4536d0
meterl = 6.5d0 * ,3048d0
lensq = meterl ** 2
mg = masskg * grav
first = .false.
go to 10
end

subroutine dgen(n, t, y, ypr, pdy, pdypr, pdt)

double precision t, y, ypr, dx, dy, dt

dimension y(1), ypr(1), pdy(n, 1), pdypr(n, 1), pdt(1)
return

end

Output

Extreme string tension of .153D+04 (1b/s**2)
occurred at time .251D+01 :
The number of steps are fulfilled by NODEI = 49

94 A.L Levykin

References

{1] Levykin A.L, Novikov E.A. On (m, k)-method of two order accuracy for solving
implicit systems of the ordinary differentials equations. — Novosibirsk, 1987. —
(Preprint / RAN. Siberian Branch. Computing Center; 768) (in Russian).

[2] Levykin A.L, Novikov E.A. One-step method of the three order accuracy for
solving implicit systems of the ordinary differential equations // Modelirovanie
v Mekhanike. — 1989. — Vol. 3, N¢ 4. — P. 90-101 (in Russian).

[3] Levykin A.L, Novikov E.A. A class of (m, k)-methods for solving implicit sys-
- tems // Soviet Math. Dokl. - 1996. — Vol. 348, Ne 4. — P. 442445 (in Russian).

