
Bull. Nov. Comp. Center, Comp. Science, 38 (2015), 105–119
c© 2015 NCC Publisher

On the need to specify and verify standard
functions

N.V. Shilov

Abstract. The problem of validation of standard mathematical functions and li-
braries is well-recognized by industrial and academic professional community but
still is poorly understood by freshmen and inexperienced developers. The paper
gives and discusses two examples (from the author’s pedagogical experience) when
formal specification and verification of standard functions do help and are needed.

Keywords: mathematical functions, standard libraries, formal specification, for-
mal program verification.

1. π is 4

1.1. What is π?

How I want a drink, alcoholic of course,
after the heavy lectures involving quantum mechanics.

James Jeans (1877-1946), British Scientist [17]

The mathematical irrational number π is the ratio of a circle’s circum-
ference to its diameter D; it is also a well-known mathematical fact that
the area of the circle is (π ×D2)/4, i.e. it is π/4 of the area of the square
built on the circle’s diameter. This observation leads to the Monte Carlo
method1 for computing an approximation of π as follows (Figure 1): draw
a segment of a circle in the first quadrant and the square around it, then
randomly place dots in the square; the ratio of the number of dots inside
the circle to the total number of dots should be approximately equal to π/4.
For example, the series of trials depicted in the figure gives π/4 ≈ 8

11 , i.e.
π ≈ 2.(90).

Of course, the above approximation of π as 2.(90) is not a good one.
Fortunately, almost everyone remembers a much better approximation 3.14
for π. Moreover there are many ways to memorize more digits than 3 as
above. One way is to memorize a story in which the word lengths represent
the digits of π: the first word has 3 letters, the second has 1 letter, the
third has 4 letters, and so on; in particular, the epigraph of this section is
an example of a story to memorize 15 digits of the number.

1The Monte Carlo method is not adaptive and is very slow compared to other methods
to compute π.

106 N. V. Shilov

Figure 1. The Monte Carlo method to compute π

Some computer languages have a standard function to compute π ap-
proximations. For example, the official site support.office.com specifies
a standard PI function and how to use it as follows [18]:

PI function
This article describes the formula syntax and usage of the PI function
in Microsoft Excel.
Description
Returns the number 3.14159265358979, the mathematical constant pi,
accurate to 15 digits.
Syntax
PI()
The PI function syntax has no arguments

1.2. π by Monte Carlo

An error becomes an error when born as truth.
Stanis law Jerzy Lec (1909-1966),

Polish poet and aphorist [19]

The C-program depicted in Figure 2 implements the above Monte Carlo
method to compute an approximation for π. It prescribes to exercise 10
series of 1,000,000 trials each. This code was developed by a Computer
Science instructor to teach first-year students C-loops by an example of a
very intuitive algorithm. There were 25 students in the class that used
either Code::Blocks 12.11 or Eclipse Kepler IDEs for C/C++ with MinGW
environment. Let us refer to this program as PiMC (π-Monte Carlo) in the
sequel.

Imagine the confusion of the instructor when each of 25 students in the
class got 10 times the value 4.000000 as an approximation for π! But it was
not the last shock for the instructor this day: a Mathematician that came

On the need to specify and verify standard functions 107

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

int main(void){

srand(time(NULL));

int i, j, r, n = 10;

float pi_val, x, y;

int n_hits, n_trials=1000000;

for(j = 0; j < n; j++){n_hits=0;

for(i = 0; i<n_trials; i++){

r = rand()% 10000000;

x = r/10000000.0;

r = rand()% 10000000;

y = r/10000000.0;

if(x*x + y*y < 1.0) n_hits++;}

pi_val = 4.0*n_hits/(float)n_trials;

printf("%f \n", pi_val); } return 0;}

Figure 2. The C-program PiMC to compute π approximations

to run the next class had proved that π is really 4. Look at Figure 3 that
presents the first three in a sequence of figures circumscribing a circle with
a diameter D: every next figure results from the previous one by “cutting
corners”. The sequence converges to the circle; hence its perimeter converges
to π × D. But perimeters of all figures in the sequence is a constant 4D.
Hence π = 4.

So we can summarize: a very intuitive Monte Carlo computational ex-
periment repeated independently 25 times and an obvious proof lead us to
a paradoxial conclusion that π is 4.

Figure 3. The first three figures of a series converging to a circle

108 N. V. Shilov

1.3. Formal methods as a rescue

First let us rule out a mathematical “proof” that π = 4: the mathematical
arguments presented here do not prove that π = 4 but demonstrate in-
stead that convergence in the metrics L∞ does not imply convergence in the
metrics L2 [9]: the sequence converges to the circle in the metrics L∞, the
perimeters of all figures are 4D, but the sequence does not converge to the
circle in the metrics L2 and the circumference of the circle is π×D ≈ 3.14D.

Next let us try to figure out what is wrong with the computer program
PiMC with the aid of Formal Methods [5]; in particular, let us try to specify
the program in the classical Hoare style by pre- and post-conditions [2].

The pre-condition may be TRUE since the program has no input. The
post-condition may be pi val==4.0 since we know from the program exer-
cise the final value of the variable. Due to the exercise, we may formulate
the following hypothesis

|= [TRUE] PiMC [pi val==4.0], (1)

i.e. the total correctness assertion [TRUE] PiMC [pi val==4.0] is valid.
If we try to apply the classical verification methods [2] to generate veri-

fication conditions and prove the above assertion, we come to a problem of
formal semantics of the function rand() in the assignment

r=rand()%10000000; (2)

that has two instances in the program. The standard rule to generate a
verification condition for an assignment is

φ(x)→ ψ(t)

[φ(x)] x = t [ψ(x)]
;

for function rand() it leads to the following rule:

φ(x)→ ψ(rand())

[φ(x)] x=rand() [ψ(x)]
.

Unfortunately, we do not know enough about the properties of this func-
tion to prove any non-trivial verification condition! In particular, from an
intuitive very informal understanding of a random-value generator, rand()
should generate with equal probability all values from some range2 Range;
it implies that the premise φ(x) → ψ(rand()) in the rule for rand() is
equivalent to the formula φ(x)→ ∀x ∈ Range. ψ(x). This verification con-
dition generation rule looks very special (not to say suspicious). For this

2For the C-language it is known (please refer to the next subsection 1.4) that this
Range is an integer interval [0..RAND MAX].

On the need to specify and verify standard functions 109

reason, the Hoare-style verification for probabilistic programs has got little
attention in the past [4] and is an actual research topic [16].

Nevertheless, after the above discussion, one may conclude that the cause
of wrong π approximation by the program PiMC is the use of the assign-
ments (2) and (maybe) the use of the standard function rand(), its poor
specification in the language standard and no verification in MinGW.

1.4. How to fix it

Remark. This subsection is due to reviewer’s comments for the initial
version of the paper. The author is very much obliged to the anonymous
reviewer and would like to thank him/her for a very valuable addendum.

The C-language reference portal at en.cppreference.com/w/c provides
the following loose specification for the function rand() [20]:

C Numerics Pseudo-random number generation
rand
Defined in header <stdlib.h>
int rand();
Returns a pseudo-random integral value between 0 and RAND MAX
(0 and RAND MAX included).
srand() seeds the pseudo-random number generator used by rand().
If rand() is used before any calls to srand(), rand() behaves as if
it was seeded with srand(1). Each time rand() is seeded with srand(),
it must produce the same sequence of values.
rand() is not guaranteed to be thread-safe.
Parameters
(none)
Return value
Pseudo-random integral value between 0 and RAND MAX, inclusive.
Notes
There are no guarantees as to the quality of the random sequence produced.
In the past, some implementations of rand() have had serious shortcomings
in the randomness, distribution and period of the sequence produced
(in one well-known example, the low-order bit simply alternated
between 1 and 0 between calls).
rand() is not recommended for serious random-number generation needs,
like cryptography.
POSIX requires that the period of the pseudo-random number generator
used by rand is at least 232

POSIX offered a thread-safe version of rand called rand r,
which is obsolete in favor of the drand48 family of functions.

Of course, this specification is neither formal nor accurate and, hence, can
not help us to prove every formal property of every program that uses the

110 N. V. Shilov

function rand(). Nevertheless, this specification contains enough informa-
tion to detect what is wrong with the assignment (2) in the program PiMC.

Recall that the function rand() returns an integer in the range from 0
to RAND MAX inclusively. In many conventional implementations of the C
language (including MinGW), RAND MAX is 215 − 1 = 32767 < 1000000. It
implies that assignment (2) is simply equivalent to the assignment

r = rand();

Since the value of RAND MAX in our experiment is just 32767, the normalizing
assignments

x = r/10000000.0;

.................

y = r/10000000.0;

result with the values of x and y lying in the range [0, 0.032767]; hence,
the condition x*x + y*y < 1.0 in the if -operator after these assignments
is always true and the program PiMC always increments the value of the
variable n hits that counts the number of “randomly” dropped points that
have fallen inside the segment of the circle. It implies that after termina-
tion of the internal loop for (i = 0; i<n trials; i++), the values of the
variables n hits and n trials are always equal, and consequently the final
value of pi val is always exactly 4. We can consider the above discussion
as an informal proof for following statement:

|=[rand()∈[0..RAND MAX] & RAND MAX==32767] PiMC [pi val==4.0].

The above consideration and discussion lead to the idea how to fix the
program PiMC. The body of the internal for-loop should be replaced, for
instance, by the following code:

x = rand()/(float)RAND_MAX;

y = rand()/(float)RAND_MAX;

if(x*x + y*y < 1.0) n_hits++;

Let us denote the fixed code by FixPi. Then one can exercise the program
and get rather reasonable approximations for the irrational number π. For
example, the anonymous reviewer has got the values 3.140932, 3.141289, . . .
3.141315 in a row. The mean value is 3.141353. Due to the exercise, we may
formulate a new hypothesis:

|=[RAND SPEC & RAND MAX==32767] FixMC [3.140<=pi val<=3.142],

where RANS SPEC stands for a formal specification of rand(). But we have
to say that we still do not know how a loose specification of rand() from the
C-language reference portal can help us to prove or refute the above total
correctness assertion.

On the need to specify and verify standard functions 111

2. What is SQRT?

2.1. Solving quadratic equations

A very popular (but vulgar for professional education) approach to teach
standard input/output, floating point data type, sequencing and branching
control flow is to program the solving of quadratic equations. (Please check
[7, 21, 22], for instance.) In Figure 4, one can find a variant of a vulgar
solver for quadratic equations in the form ax2 + bx + c = 0. We call this
solver “vulgar” because none of the conventional computers can solve (in the
purely mathematical sense, i.e. find a root) the simple equation x2 − 2 = 0
(i.e. to compute

√
2) due to the irrational nature of the root but the finite

size of all numeric data types in every implementation of the C language.
#include <stdio.h>

#include <math.h>

int main(void){

float a, b, c, d, x;

printf("Input coefficients a, b and c and type ENTER after each:");

scanf("%f%f%f", &a, &b, &c);

d=b*b -4*a*c;

if (d<0) printf("No root(s).");

else {x= (-b + sqrt(d))/(2*a);

printf("A root is %f.", x);}

return 0;}

Figure 4. A vulgar solver for quadratic equations

To clarify an ambiguity with the conventional computer ability to solve
quadratic equations, let us check what is said at the C reference portal at
en.cppreference.com/w/c regarding the “square root function” sqrt [23]:

C Numerics Common mathematical functions
sqrt, sqrtf, sqrtl
Defined in header <math.h>
float sqrtf(float arg); (1) (since C99)
double sqrt(double arg); (2)
long double sqrtl(long double arg); (3) (since C99)
Defined in header <tgmath.h>
]define sqrt(arg) (4) (since C99)
1-3) Computes square root of arg.
4) Type-generic macro: If arg has type long double, sqrtl is called.
Otherwise, if arg has integer type or the type double, sqrt is called.
Otherwise, sqrtf is called. If arg is complex or imaginary,
then the macro invokes the corresponding complex function (csqrtf, csqrt, csqrtl).

112 N. V. Shilov

Parameters
arg - floating point value
Return value
If no errors occur, square root of arg (

√
arg), is returned.

If a domain error occurs, an implementation-defined value is returned
(NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding)
is returned.
Error handling
Errors are reported as specified in math errhandling.
Domain error occurs if arg is less than zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
• If the argument is less than −0, FE INVALID is raised and NaN is returned.
• If the argument is +∞ or ±0, it is returned, unmodified.
• If the argument is NaN, NaN is returned
Notes
sqrt is required by the IEEE standard be exact.
The only other operations required to be exact are the arithmetic operators
and the function fma. After rounding to the return type
(using default rounding mode),
the result of sqrt is indistinguishable from the infinitely precise result.
In other words, the error is less than 0.5 ulp.
Other functions, including pow, are not so constrained.

One can see an ambiguity in the specification. According to the above
citation, the specification first says that sqrt(2) must be

√
2, but then (in

the Notes) that the error of sqrt(2) must be less than 0.5 of ulp3 because,
by the IEEE standard, the function is required to be exact. Of course, we
have to rule out the first option (that sqrt() is

√
) and examine in detail

the second one (that sqrt() computes
√

with an error less than 0.5ulp).
The standards mentioned in the specification are IEEE 754-2008 Stan-

dard for Floating-Point Arithmetic and the international standard ISO/IEC
60559:2011 [24] (that is identical to IEEE 754-2008). Section 9 of the stan-
dard recommends fifty operations that language standards should define
(but all these operations are optional, not required in order to conform the
standard). But some operations (including sqrt() as a special case of the
function ()1/n for n = 2), if implemented, must round correctly (i.e. with
an error less than 0.5ulp).

Another very critical problem with the specification and ISO/IEC/IEEE
standards above is the absence (in the specification and standards) of a de-
scription of any validation procedure to check/prove that an implementation
conforms to the specification/standard.

3The unit in the least precision (that is type and platform dependable).

On the need to specify and verify standard functions 113

2.2. An alternative for sqrt

Instead of requiring that sqrt compute the exact irrational square roots
for type- and/or platform-dependent approximate values of square roots, it
makes sense to specify in the language another “standard” generic function
(say SQR(,)) for a generic numeric type (that is the union of all numeric
types) with a return value and two parameters of this generic numeric type,
where the first parameter is for passing the argument value Y ≥ 0 and
the second is for passing the accuracy value E > 0; the function is for
computing

√
Y with the accuracy E. Let us use the following notation for

the function SQR: SQR is a mathematical function of two real arguments
that is computed by SQR, i.e. for every non-negative real number Y ≥ 0
(that is representable in the generic numeric type) and positive real number
E > 0 (also representable in this type), SQR(Y ,E) returns SQR(Y,E). The
properties of this function SQR can be formally specified by any (or both)
of the following two clauses:

• if Y ≥ 0 and E > 0, then SQR(Y,E) differs from
√
Y by no more

than E, i.e. |SQR(Y)−
√
Y | ≤ E;

• if Y ≥ 0 and E > 0, then (SQR(Y,E))2 differs from Y by no more
than E, i.e. |(SQR(Y))2 − Y | ≤ E.

It makes sense to fix the first formal specification for better compatibil-
ity with the exact standard function, since in this case we can define the
standard function sqrt via SQR as follows:

float sqrt(float Y)

{return((float)SQR(Y, default(float)/2.0);}

where default is another new type-related feature (similar to sizeof) that
returns the value of the unit in the least precision for a numeric type.

One may select any reasonable and feasible computation method to ap-
proximate

√
. For example, it can be a very intuitive Newton-Raphson

Method [8]: first guess an initial approximation for the root; then compute
the arithmetic mean between the guess and the number (the square root of
which you want to obtain) divided by the initial guess; let this mean be a
new guess for another go-around while the difference between the next and
the previous guesses is bigger than the half of the accuracy. (Please refer
to Figure 5 for a sample implementation of the function for the data type
float.)

Both floating-point functions in Figure 5 are easy to specify4 formally in
a Hoare style:

4Note that the specification is incomplete since it does not specify the exceptional
situations (e.g. Y < 0 and/or E ≤ 0).

114 N. V. Shilov

float ab(float X)

{if (X<0) return(-X); else return(X);}

float SQR(float Y, float E)

{float X, D;

X=Y;

do {D=(Y/X-X)/2; X+=D;} while (ab(D)>E/2);

return X;}

Figure 5. A floating-point function to compute a square root approximation

[X: float] ab(X) [returned value = |X|],

[Y ≥ 0 and E > 0 are floats] SQR(Y ,E) [|returned value −
√
Y | ≤ E].

For a generic function and the generic numeric type, the specification
should be modified:

[TYPE is a numeric type, Y ≥ 0: TYPE and E > 0: TYPE]

SQR(Y ,E)[|returned value −
√
Y | ≤ E].

(3)
If these specifications are proved, then SQR may be a good alternative to
the standard function sqrt. Unfortunately, it is not easy to prove these
specifications automatically and formally because of several reasons. The
major one is an axiomatization of the computer floating-point arithmetic
[1, 12, 25]. Even a manual pen-and-paper verification of the algorithm SQR
(assuming precise arithmetic for real numbers) is not a trivial exercise which
we will solve in the next subsection.

2.3. Toward formal verification of the SQR-algorithm

In Figure 6, one can see a flowchart of (a little bit modified) the algorithm
of the function SQR from Figure 5. Let us refer to the algorithm as SQR in
the sequel. Having specified the algorithm in the same way as the function,
we need to prove the following “relaxation” of the second triple in (3):

[Y,E ∈ R & Y ≥ 0 & E > 0] SQR [|x−
√
Y | ≤ E] (4)

To prove this assertion, let us consider three disjoint cases for the range of
the initial value of the variable Y : 0 ≤ Y < 1, Y = 1 and Y > 1:

[Y,E ∈ R & 0 ≤ Y < 1 & E > 0] SQR [|x−
√
Y | ≤ E], (5)

[Y,E ∈ R & Y = 1 & E > 0] SQR [|x−
√
Y | ≤ E], (6)

On the need to specify and verify standard functions 115

[Y,E ∈ R & Y > 1 & E > 0] SQR [|x−
√
Y | ≤ E]. (7)

Since the second case (6) is trivial, and two other cases, (5) and (7), are
very similar, let us consider the last one only, i.e. the assertion (7).

Partial Correctness. Let us employ the Floyd method [2] for a pen-and-
paper proof of partial correctness. Let us select the control points 1, 2, and
3 as depicted in Figure 6 to cut the flowchart into three loop-free paths:

path (1..2) from the starting point 1 to point 2;

path (2+3) from point 2 to the final point 3 via the positive branch after
choice;

path (2–2) from point 2 to the same point 2 via the negative branch after
choice.

Let us consider all these paths one by one using the following annotations
for the control points:

1. Y > 1 & E > 0 (i.e. the pre-condition);

2. Y > 1 & E > 0 &
√
Y < X ≤ Y (the loop invariant);

3. |x−
√
Y | ≤ E (i.e. the post-condition).

The first path (1..2) is easy to verify:

(Y > 1 & E > 0)→ (Y > 1 & E > 0 &
√
Y < Y ≤ Y)

{Y > 1 & E > 0} X := Y {Y > 1 & E > 0 &
√
Y < X ≤ Y }

.

The second path (2+3) is not so easy. Let us introduce a test program
construct φ? as a short-hand for if φ then stop else abort. Then verification
of the path (after some simplification) is as follows:

Figure 6. A flowchart of the algorithm SQR implemented by the function SQR

116 N. V. Shilov

(Y > 1 & E > 0 &
√
Y < X ≤ Y & |Y −X2

2X
| < E/2) → |X −

√
Y | < E

{Y > 1 & E > 0 &
√
Y < X ≤ Y } D := Y −X2

2X
{|D| < E/2 → |X −

√
Y | < E}

{Y > 1 & E > 0 &
√
Y < X ≤ Y } D := Y −X2

2X
; |D| < E/2? {|X −

√
Y | < E}

The premise

(Y > 1 & E > 0 &
√
Y < X ≤ Y & |Y −X

2

2X
| < E/2) → |X −

√
Y | < E

is valid since in this case we have

|X −
√
Y | =

(|X −√Y | (X +
√
Y)

2X

)
×
(2X

X +
√
Y

)
<
E

2
× 2

1 +
√
Y
X

< E.

The proof (also after some simplification) of the third path (2–2) is as
follows:

(Y > 1 & E > 0 &
√
Y < X ≤ Y & |Y −X2

2X
| ≥ E/2) → (Y > 1 & E > 0 &

√
Y < Y +X2

2X
≤ Y)

{Y > 1 & E > 0 &
√
Y < X ≤ Y } D := Y −X2

2X
{|D| ≥ E/2 → (Y > 1 & E > 0 &

√
Y < X +D ≤ Y)}

{Y > 1 & E > 0 &
√
Y < X ≤ Y } D := Y −X2

2X
;

|D| ≥ E/2? ; X := X +D {Y > 1 & E > 0 &
√
Y < X ≤ Y }

A hint to prove the premise of this derivation: use the fact that D < 0 and
that the geometric mean is not greater than the arithmetic one

√
Y < Y+X2

2X .

Termination. Let us observe that the loop invariant Y > 1 & E >
0 &

√
Y < X ≤ Y implies that every loop iteration reduces the absolute

value of D by half at least.
Let us fix some y > 1 as the initial value of the variable Y , ε > 0 as the

initial value of the variable E, let x1, x2, . . . xn, x(n+1), . . . be the values

of the variable X immediately before 1st, 2nd, . . . n-th, (n + 1)-th, etc.,
iteration of the loop for this fixed initial value y of Y , and let d1, d2, . . . dn,
d(n+1), . . . be the values of the variable D immediately after 1st, 2nd, . . .
n-th, (n + 1)-th, etc., iteration of the loop (also for the same fixed initial

value y of Y). In particular, x1 = y and dn = y−x2
n

2xn
, x(n+1) = xn + dn for all

n.0.
Let us express d(n+1) in terms of dn:

d(n+1) =
y−x2

(n+1)

2x(n+1)
= y−(xn+dn)2

2(xn+dn)
=

y−(y+x2n
2xn

)2

2
y+x2n
2xn

=

= − (y−x2
n)

2xn

4x2
n(y+x2

n)
= − d2nxn

y+x2
n

= − d2n
2x(n+1)

.

On the need to specify and verify standard functions 117

Note that all values d1, d2, . . . dn, d(n+1), . . . are negative due to loop
invariant. Hence

|d(n+1)|
|dn|

=
d(n+1)

dn
= − dn

2x(n+1)
=

1

2
× x2n − y
x2n + y

<
1

2
.

It implies |d(n+1)| < y
2n , i.e. the algorithm terminates after (at most) log2

y
ε

iterations of the loop.

3. Concluding remarks

Let us start these concluding remarks with a quotation from the abstract of
paper [12], because it correlates with our paper very well:

Current critical systems commonly use a lot of floating-point
computations, and thus the testing or static analysis of programs
containing floating-point operators has become a priority. How-
ever, correctly defining the semantics of common implementa-
tions of floating-point is tricky, because semantics may change
with many factors beyond source-code level, such as choices made
by compilers. We here give concrete examples of problems that
can appear and solutions to implement in analysis software.

The major difference between [12] and the present paper is the concern: the
cited paper addresses problems with the floating point value representation
and arithmetics, while the present paper considers the problems with the
standard functions specification and implementation.

It is worth to remark that a need for better specification and validation
of standard functions is recognized (in principle) by industrial and academic
professional community, as well as the problem of conformance of their im-
plementation with the specification [3, 10, 11, 13, 14].

Paper [3] addresses the formal verification of some low-level mathemat-
ical software for the Intel Itanium architecture; in particular, it presents
the details of verification of a square root algorithm with the aid of HOL
Light theorem prover. The next two papers [10, 11] address formal specifi-
cation and testing of standard mathematical functions. The last two cited
papers [13, 14] present formal specification and verification of some standard
memory management and input-output functions.

A very serious obstacle for the formal verification of standard mathemat-
ical functions is a need for the axiomatization of the floating point arithmetic
[1, 25]. The interval analysis approach and formalization of interval arith-
metic may help us to tackle the problem for functions like sqrt but not for
functions like rand for which we need to develop and employ some special
methods for probabilistic programs [4, 16].

118 N. V. Shilov

Unfortunately, the problem (or a pitfall) of poorly specified and verified
standard functions and libraries is still poorly understood by freshmen and
inexperienced developers. Better education, specification and verification
are needed to solve the problem (and avoid the catch of poor libraries).

Remark. A preliminary very short conference version of this position paper
has been published in [15].

Acknowledgement. Many thanks for cooperation and readiness for help to
all staff of Information Technologies Dept of IIS and especially to language
editor Anna Shelukhina!

References

[1] Ayad A., Marché C. Multi-prover verification of floating-point programs //
Lect. Notes in Artificial Intelligence. – 2010. – Vol. 6173. – P.127–141.

[2] Gries D. The Science of Programming. – Springer-Verlag, 1981.

[3] Harrison J. Formal verification of square root algorithms // Formal Methods
in System Design. – 2003. – Vol. 22, No. 2. – P.143–153.

[4] Den Hartog J.I., de Vink E.P. Verifying probabilistic programs using a Hoare
like logic // Internat. J. of Foundations of Computer Science. – 2002. – Vol.
13, No. 3. – P.315–340.

[5] Hoare C.A.R. The verifying compiler: a grand challenge for computing research
// Lect. Notes Comput. Sci. – 2003. – Vol. 2890. – P. 1–12.

[6] Gutowski M.W. Power and beauty of interval methods. –
arXiv:physics/0302034 [physics.data-an].
urlhttp://arxiv.org/pdf/physics/0302034.pdf (visited January 19, 2016).

[7] Exercise]8 // Programming in C: A Complete Introduction to the C Pro-
gramming Language (3rd Edition) / S.G. Kochan. – Sam’s Publishing, 2005.
– P. 162–163.

[8] Functions Calling Functions Calling // Programming in C: A Complete In-
troduction to the C Programming Language (3rd Edition) / S.G. Kochan. –
Sam’s Publishing, 2005. – P. 131–137.

[9] Kolmagorov A.N., Fomin S.V. Elements of Funcions Theory and Functional
Analysis (4th ed.). – Nauka Publishers, 1976 (In Russian).

[10] Kuliamin V. Standardization and testing of mathematical functions // Pro-
gramming and Computer Software. 2007. – Vol. 33, No. 3. – P. 154–173.

[11] Kuliamin V.V. Standardization and testing of mathematical functions in float-
ing point numbers // Lect. Notes Comput. Sci. – 2010. – Vol. 5947. – P. 257–
268.

On the need to specify and verify standard functions 119

[12] Monniaux D. The pitfalls of verifying floating-point computations // ACM
Trans. on Programming Languages and Systems. – 2008. – Vol. 30, No. 3. –
P. 1–41.

[13] Promsky A.V. C Program Verification: Verification Condition Explanation
and Standard Library // Automatic Control and Computer Sciences. – 2012.
– Vol. 46, No. 7. – P. 394–401.

[14] Promsky A.V. Experiments on self-applicability in the C-light verification sys-
tem // Bulletin NCC. Series: Computer Science. – 2013. – Iss. 35. – P. 85–99.

[15] Shilov N.V. A Need To specify and verify standard functions // Proc. Internat.
Conf. Tools & Methods of Program Analysis (TMPA-2015, November 12–14,
2015). – Saint-Petersburg State Polytechnical University. – P.119–122.

[16] Rand R., Zdancewic S. VPHL: a verified partial-correctness logic for proba-
bilistic programs // Electronic Notes in Theor. Comput. Sci. – 2015. – Vol.
319. – P.351–367.

[17] Pi. Memorizing digits. – https://en.wikipedia.org/wiki/Pi#Memorizing_

digits (visited January 19, 2016).

[18] Pi Function. – https://support.office.com/en-us/article/

PI-function-264199d0-a3ba-46b8-975a-c4a04608989b (visited January
19, 2016).

[19] Stanislaw Jerzy Lec Quotes. – http://www.azquotes.com/author/

8631-Stanislaw_Jerzy_Lec (visited January 19, 2016).

[20] C reference. – Rand.http://en.cppreference.com/w/c/numeric/random/

rand (visited January 19, 2016).

[21] How to make a program that solves the quadratic formula. – http://www.

youtube.com/watch?v=15NbFrBUdu0 (visited January 19, 2016).

[22] Write a C++ program that solves quadratic equation to find its roots. – http:

//www.cplusplus.com/forum/general/36313/ (visited January 19, 2016).

[23] C refernce. Sqrt, sqrtf, sqrtl. – http://en.cppreference.com/w/c/numeric/

math/sqrt (visited January 19, 2016).

[24] ISO/IEC/IEEE 60559:2011. – Information technology – Microprocessor Sys-
tems – Floating-Point arithmetic http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57469 (visited January
19, 2016).

[25] Hisseo. – http://hisseo.saclay.inria.fr/index.html (visited January 19,
2016).

120

