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On the explicit-implicit domain
decomposition method without
overlapping for parabolic problems*

S.A. Litvinenko

The paper deals with studying the domain decomposition algorithm on two subdomains,
where for one of them, which contains sufficiently small number of nodes, is used explicit
sckeme with small time step, and for another subdomain may be used effective direct
algorithm (for example, subdomain is parallclepiped}. This method is based on the
splitting method. The algorithm formulation is given in projection form with the finite
element approximation. The lumping operators technique is used for this purpose.

1. Introduction

In the paper [1] the domain decomposition method without iterations,
which use decomposition for problems with nonideal contact with applica-
tion of penalty method, was cosidered. The third boundary value problem
in separate subdomain is solved by splitting scheme. It is supposed that
subdomain is m-parallelepiped. However, if the domain is a union of some
numbers of m-parallelepipeds and of arbitrary polytops in R™ with suffi-
ciently small quantity of verticies, then the explicit-implicit scheme with
small step on time may be used in the same subdomain. For domain de-
composition method with overlapping such approach was realised in the
paper [2]. The realization of this idea for the method without overlapping
constitutes the subject matter of this paper.

In this paper we will consider the case of only two subdomains. On
the one hand it is made for simplification of the formulas, and on the
other hand it justified the parallel algorithm of domain decomposition.
The question about parallel algorithm was discussed in the paper [1]. Note
that, as in [1], one may use a compound grid in proposed algorithm, i.e.,
the grids in separate subdomain do not connect with each other. Numeral
experements, which are adduced at the end of the paper, illustrate the
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asimptotical behaviour of parameter s, which characterizes the small step
on time 1, = 7/s.

2. Formulation of the problem

Let  be a bounded domain in R™ (m = 2,3), Q; and Q; be subdomain
in Q, such that the conditions

Q] U ﬂg = Q, Ql n 92 = 0, (21)

are valid and T'y; = Q0 N Qy. Let us introduce some notions, wich will
be used further. Let I', = 3Q, be a boundary of subdomain Q,, p = 1,2,
@Q: = (to,t.) X R, Qip = (to,ts) X 2, be subdomain in Q;. In the space
H(Q,)x H(R,) we cosider m one-parametric families of the biliniar forms

W tu)= [ MeD s edz, k=lm  (22)
P

where t € [to,1,] is a real parameter. We assume that the functions Ax(t, z)
are continuous in @, (but not in Q) and are limited from below positive
number Ag. Assumptions on smoothness of these functions will be given
in what follows. Let us introduce in H'((2,) a family of linear functionals
as a duality relation in H~1(Q,) x HY(Q,), i.e., l(t;v) = (fp(t), ), where
(,) is the scalar product in Ly(%,), fp : [to,t.] — H~'(£,). Henceforth,
by u(t) we denote the value of the function u : [to,t.] — X, which is the
element of some Banach space X, and %‘,_.—‘(t) means a strong limit in X (if
such limit exists) of the elements [u(t)], = (u(t + 7) — u(t))/r for r — 0.
Let X, be a space of defined in Q functions from X(Q,) in ©, which are
extended to the outside of Q, by zero. Then let us consider the space of
vector-functions
X. = X1 X Xz

with the norm |juf[. For example, ||ullg = (||lwll% @y t [}ug||H,(n ) )2,
where u,, p = 1,2, are components of the vector-function u. The scalar
product in L is (u,v) = (u1,v1)1+(u2, v2)2. In the space H'(,)x H!(1,)
and H'(Q) x A'(Q) one may define families of bilinear forms

ay(t;u,v) = al¥)(t; u, v , p=12, 2.3
P P .
k=1
a(t; u,v) = a1(t; u,v) + az(t; u,v). (2.4)

In the space H! we may consider the subspace
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A ={ve B': v(Z)=vy(8), £ € T1a}.

Let us formulate the Neumann parabolic problem in the subspace H1:°.
For ug € Ly and f € Lg((tg,t.);fl -1) it is necessary to find the vector-
function u € La((to,t.); H'P), such that du ¢ La((to,t.); H~1) and Vo €
A the following equalities are valid:

(Z(0),v) + attsu(t),) = (@) v), @)
(’M(tg), rU) = (uﬂa ’U). (26)

It is not difficult to note that (2.5), (2.6) are equivalent to the conventional
formulation of the generalized Neumann parabolic problem in the space
HY(Q).

In accordance with the paper [3] we formulate the Neumann propblem
with a nonideal contact between the neighbouring subdomains. For ug €
Ly and f € Ly((to,t.); H™Y). it is necessary to find the vector-function
u? € La((to,ts); HY), such that % € Ly((to,t.); A1) and Vv € H' the
following equalities are valid:

(%(t), v)+ a(t; uf(t),v)+ %Ang(t)— ub(1))(vy— va)do = (f(1),v), (2.7)
(up(tﬂ)? ’U) = (uﬁa ‘t)), (28)

where p > 0. Now we will rewrite equation (1.7) for every subdomain.
Supposing v = (v1,0) and v = (0, vy) we obtain the following form of (2.7)

(%tf(t), vp) ; ap(t; up(t), vp)+ :—) /P f:;(t)— up(t))vpdo = (fy(1),vp)p- (29)

To these equations the following conditions on the inner bounderies I'y 3 for
classical parabolic problem with conditions of nonideal contacts correspond

0u’? oul
_ L _
Paak(t3) + p5d(1,2) =0, (,2) € Tyra, (2.10)
Qup ,, _ ole = 0re oy _
pa—np(t,:c) + up(t, ) - uf(t,2) =0, (t,%)€ Lo, (2.11)

where p = 1,2, ¢ = 2,1. The normal derivatives may be written in the
following form:

b ., 0uh
P _ E :,\ -3 T
onp "z cos(m, %),
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where 7, and z* are the unit vectors of the external normal to 2, on T2
and of the coordinate k-axis.

Now we will cite on two inequalities which will give us a theoretical
asis for the design of domain decomposition methods. If the solutions to
problems (2.5), (2.6) and (2.7), (2.8) of the subdomain are enough smooth,
the inequatities are valid

IA

clP”“”H:l((;o,g,);ﬁn) (2.12)
ca|lullx, (2.13)

o — ull ot a1iLa)
llu’llx
where X is some subspace of the space Lg((tg,t,.);fl i) and p < po, the

positive numbers ¢;, ¢2, po do not depend on the parameter p and the
functions u and u?. The proofs of (2.12) and (2.13) are given in [3].

IA

3. Discretization and some inequalities

Let us introduce some notions for discretization of problem (2.7), (2.8).
The terminology, which will be used further, corresponds to the paper
[4). Let 74, be a regular set of m-simplexes. Let us note that the set
Th = Thy U Thz is not co-ordinate grid, i.e., in © we use a compound
grid. For the set 7, we will introduce the system of the piecewise linear
functions {pi(Z)}icr,, where I, is a set of numbers of all vertices Z; of
the set 7}, p, ¢pi(Z;) = 6;;, where é;; =1 and 6;; = 0 for i # j, further, let
us introduce Vj, = span{epi(Z)}icr, Then let I, : C(Q,) — Vi p be an
interpolating operator difined by the formula

I pu(Z) = Z u(zi)ppi(E), T €Dy
i€l,

In accordance with the paper [5] we introduce the lumping operator Py, :
Vhp = Lap, where Ly, C La(f2,). Let us consider the bilinear form

dh,p(”a w) = (Ph,p'ua Ph,pw)py v, W E Vh,ps r=12 (31)

which is continuous in Ly(€2,) % L2(Q,), La(£2,) is elliptic, and the following
estimation is valid:

1 .
|dn,p(Th,pu, ©) — (u,0)p| < Ch(l“ﬁ{l(ﬂ,) + hz”“”?ﬂ(n,)) /2||”1|L2(n,,)- (3.2)

The analogous estimation is valid in the space of traces of the grid func-
tions. However, this estimation will be not applied in the case of using the
compound grids, because the functions coming in the estimation integrals
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belong to different finite-dimentional subspace of traces. For this case the
corresponding estimation is given in {1]. In the space H?(Q;) x V3 we will
consider the bilinear form

lpg(u,v) = / ((Pr,gTTn,qu)(Prpv) = wv]da. (3.3)
12
Then the following estimation is valid:

2
lpg (s 0)] < ch(lullyaqay) + 2 lulEsag) ooy (34)

where u € H3(R,), v € Vip. In case of co-ordinate grid the estimation
(3.4) may be strengthened

1/2
(15, 0)] < b2 (ullysqary + B2 ellrsay) 2 Iolarsn): (39)
Finally, let us introduce the vector space
Vi = Vi3 X Vi,

where V’ is a space of functions from Vj, in €, and are extended to the

outside of 1, by zero. It is easy to note that Vi c H'n C. In the space
Vi, X Vi, we w1ll consider the bilinear form

dh(v, w) = dh,l(”l, w;) + dh'g(’vz, -wg), (3.6)

which is positive definite in L.

4. Formulation of the method

Let Q,; be some polytop, Q2 be m-parallelepiped. Let us introduce some
notions. Let ;2 and z* be the unit vectors of the external normal to €,
on I'y 2 and of the coordinate k-axis. Let

gkg ={z€eTl: cos? (1,2, ") = 1}.

Along with (2.3) we will denote
19, ) = /F o [(PagTThqu)(Papo) = us]do. (4.1)
1,2

We will note that 7, 188 (u, v) = Lg(u, v).
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Now let us formulate the domain decomposition method with using the
explicit scheme in 2, and splitting scheme in 2, for solving the Neuman
problem. Let N be some integer number, 7 = (t. ~t5)/N and t, = to+ nT,
n = 1,...,N. We introduce the sequence of numbers {r;};_, such that
1>0 and Y.1=1 1 = 7. Hereafter we will use the notion A; = }:I It

is required to find the functions un+l/ € Vi1 and u, ntk/m ¢ Vh,2 such tha.t

n+l/s n+(l-1)/s
—-u (i
dna (—1 o) + aa(tn + Arg;up O o))

+ l Ph,lu;‘+('-1)/mPh,2v{do = (4.2)
P Jry,

1 m
—Z[(k) w2ty T Py vlde 4 (filte + Aimr)y b, =100,
pk: l-‘12

n+k/m . u;+(k—1)/

kfm
dha(B—— 0f) + @ tnas 5™, o)
+ l/ thﬂ2+ k/m Ph 205 kdo = (4.3)
pJr)
Iy~ e p, ok . o
;ZT/(k) h Phavido + (f3*,0k)s, k=1, . m,
up = Mppuop, p=1,2, , (4.4)
where f;* = 0, k < m — 1, and ™ = fa(tng1), u2 R T

supposed that uo € H? and according to the concluding theorem ug € C
and ug, belong to a set of definition of the operator Il .
Let u(t) be a solution to problem (2.5), (2.6). We will assume that

Ak € C([tﬁa't-]; és)x uE C([to,t*]; fI“),

du (4.5)

€ Iaf(to,t i B, T € Lal(tor )i ).

d
According to inequality (2.14) the vector-function u” holds the same
smoothness and, therefore, the functions Il uj(t, + A;) and I ou5(t,)
exist. Then we introduce the sequences:

;a+z/s _ ualz+t/a — M uf(te + Ar), I=1,...,s, (4.6)
;H‘k/m _ u;+k/m — T 2t (tgn) + Trn+k/m., .k =1,...,m, (4.7)
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where r2+ k/m ¢ Vh2 and 13 =0,n=0,...,N. Then £ = up — T pup(tn)
and according to (4.4), (4.6) and (4.7) £° = 0. Moreover, we will assume
k/m=1 = 0, such that uf/™1 = 49 from (4.7) it follows ra/m1 = .
Accordmg to (4.2), (4.3) let us write the scheme for the functions E"'H/’

and §“+k/ ™. We have

ntlfs _ nt(l-1}/s

dh,l( 1 1';1 )-I-th(f +A:-1y5n+“ 1)/5 v})

1 bl
+ = A P &§H0/mp, slde = (4.8)
1,2

1 — ~1+k/m n
—Z/m Pio&; "™ By yoldo + g (o)),
pk:l rl.?

ntkfm _ ont(k=1)/m
dh,? (62 E‘z y v;c) )(tn-l-l y ﬂ+k/m, U2)

1
+- / Pi oy tH/™ Py gvkdo = (4.9)
P Jrl") :

—Z”f g Pl Bunido + g3 (oh),

T

Using the initial equation (2. 9), after simple transformations we obtain the
formula for the functionals g;" (v;)

g1 (v1) = o (v) + B (m) + TP (o) + T8 (m), 1=1,...,s, (4.10)

where the functionals a}(v;), B™(vy), 77! (vy) and 67(vy) are given by
the equalities:

(vl)‘_a (Ul)+a (Ul)’ I= 1!"f$3a (411)
ai(vi) = (%(tn + Ary) = [uf(ta + Al-l)]mvl)l, (4.12)
0"1 2 = ([ul(t + A1)l v — dpa (el (tn + A1y Nrov1),  (4.13)

P = Bla(e) + Bs(m), 1=1,...,s, (4.14)

n'1(1)‘1) =aq (t + A_y; #f(tn + A1) = Dpauf(tn + Aimy),v1),  (4.15)

1
(‘01) = 12 1( 2(ta,v1) — ;h,l(ttf(tn + Air), ), (4.16)
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7;"1(”1) =0,

. A | (4.17)
A (m) = — -1 j [uz(tn)]a,,v1do, 1=2,...,8,
pT Tz -
n _ 1« n—1+k/m
61 (‘Ul) = —; Z F(") Pfhgi’z Ph'ltﬁda. (4.]_.8)
= 1,2 ‘

Bilinear forms l,4(q,vp) are difined by formula (3.3). -

Let us integrate by parts the bilinear form (2.2) for p = 2, taking into
account conditions (2.10), (2.11) and the Neuman conditions on I'. Besides,
we will use the fact that £, is m-parallelepiped. As a cosequence we obtain

o (t;u2(t), v2) = () (2), v2)s - % /F (1) = W(D))rdo,  (4.19)

where

P0-- L (:8)0

Now we introduce the functions r2+ kim ¢ Vh,2

k
A = (g, + 3 A )}, k=1 mo1 (420)

r=1

Using the initial equality (2.9), equality (4.19) and expression for the func-

n+k/m

tions r, , we obtain the formula forthe functionals g3 _’k(vg)

7K (v2) = @p*(v2) + B (v2) + 793 (v2) + 767" (v2), k< m -1, (4.21)
m-1

g™ (vg) = af™(va) = Y o (v2) + By ™ (v2) + 793 (v2), (4.22)
k=1

where functionals ag’k(vg), ﬁ;‘k(vz), 72"‘(1}2) and ﬁ;‘k(ﬁg) have the form

o*(vy) = dhg(u“zg"’(:,m ,02) = (28 (tng1),02),, K< m—1, (4.23)

ay™(vz) = agy"(v2) + @y (v2), (4.24)
o3 (v2) = (%{tn+l) - [(t)lesv2) e
ayy = ([ug(tn)]r,vz)z—dh,z(Hh,z[ug(tn)]f,vz);_ ' |  (4.26)

Bi*(vg) = Bk (v) 4 B3h(wa), K =1,,m, ‘a27)
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gf (v2) = a(zk) (tn415 v (tns1) — Ma2uh(tns1 ), v2), (4.28)
1 ' 1
By (v) = ;li‘,‘% (wf(tn + Ai-1),v2) — ;fé’,‘%(ua’(tw),vz), (4.29)
1 o ni(r — A )
1) = ==Y ——— / [65(tn + Are1))r-a,_v2do,  (4.30)
P =1 T Fg,l‘)
k=1,...,m,
6% (v2) = 651 () + 875 (v2), k<m—1, | (4.31)
63t (v2) = Y (tnyr; 73 ™, va), (4.32)
1
6;:;(”2) = ;/[‘(") Ph,zT;+klmPh,2U2d0’. (4.33)
1,2

Bilinear forms lf,’fq) (ug,vp) are defined by formula (4.1)
The equalities (4.8)-(4.18), (4.21)~(4.32) completely define the form of
the error equations of method (4.2)-(4.4).

5. Error analysis

We carry out the error analysis similarly to the paper [3]. We begin the
error analysis from the obtaining the integral identity, which is a foundation
of the stability analysis in the norm of space L;. Let us assume v} =

2néy /2 in (4.8), vk = 2r€; Th/m in (4.9), and then we will sum equations
(4.8) over { from 1 to s, and (4.9) over k from 1 to m. It is an easy matter
to notice that the inequality is valid

& m
+k/m-1 +fs
A [ Prals ™ gt do| <
1,2

=1 k=1

s m
En/ (Ph'1£r+f/s)2d0' + TZ /(k)(Ph'z‘E;—l-i-k/m)Qdo.,
=1 R k=17T12

(5.1)

8 m

2i / . Pa g€t py gnt-1)/s dai <
=1 k=1 r:.z

L] m
> o / (Pun&; VYo + 7% / (Pr263 ™) do.
1= T k1 I

Using (5.1) it is obtained
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1 ¢ nt(I=1)/s
e+ /r (Prabl D)2 4

_Znal (tn + Ayy; F0D0 g gnblle gnt(=D)fs | entlfa) |
l_..

Z{dm i m) — 5a1(tn + Diorinf,nl) - —/ (Pham)’do} <
=1 2 P Jri

dni(&7,67) + = E /;m Praty ™ do 4 22 ngi (e, (5.2)

ntl gntl ntk/my2
d2(67, 67 + - Z/m( Prpby ") do +
272“( Mgt ™, ™) 4 dya(nf, mf) <

dhz(fzsfz)‘i' n / (Pan&y V0 2d0 4 20 3 gpk (™), (5.3)

_ En+l/a _ £?+(I—1)f.s — £;+k/m _ §;+(k—1)/m.

Qur fuar-
n-H/a)

where 7} and ¥
ther actions are connected with estimation of the functionals g (1;'

(Estimation g;‘k(fg"'k/ ™) is executed similarly to [1].) For this aim we
take the standard technique based on the use of the Cauchy-Buniakovsky
inequalities, the e-inequalities, estimations (3.2) and

el < 72|

Let us introduce the notion for norms of vector-functions components

. 5.4
Ly((t,t47):HY) (5.4)

1/2
”wP“p,(I) = (”wp”g([to,t.];H‘(ﬂp)) + h2”wpué({tolt_];ylﬂ(Qp))) / 1 5 5)
1/2 )
lwpllp,qeremy = (NwpllZ, qeremyrm(any) + BNl qqernyirz,yy) s
and for norms of vector-functions
1/2
lolly = (lelle ety + A0 UG i upiieny) (5.6)

1/2
lllgeeny = (02 ooty + A20N2 0 oy, r2y)

We notice that
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g =g Z ;. (5.7)

r=1

It is not difficult to obtain the following estimation:

n,l 511 €11 d?uf 2
(€D € —==d — : . (5.8
a2 (&) “(E“ElH ” dt? lLQ((:,.+A1_1.:,.+A,);L2(Q=}) (58
Using iﬁequality (3.2) and estimation (5.4) we get
nd ren <512 C1,2 2_1 dul
QNI < B ) + 22w | (69)
Similarly we obtain the inequalities
d*uf |2
ay <—d ’ + o138 | ! , (5.10
o3 (D)1 < ZE2da (nf, m)+ 22| = |Lzm,,m,_;,t,,w;m,n (5:10)
du’
<¢ d , h2 TH =2 , 5.11
g5 o) + 22 g )
further
mn, n, n - 8 n 3 1 n
BTy = 2 B (E I+ ) BT, (5.12)

The estimation of the functional ,B;‘,’;('ul) follows from the continuity
of bilinear form (2.2) and the standard estimation of interpolation in the
norm of space H(Q;) [4]

|ﬁ n+(l 1}/s +£n+l/3)|

< (tﬂ + A[_1;§"+(I_l)’/a+ 6;‘4“/3,{?4-“—*1)/3 + 6]’_1-“/5) +

f1s
2
L2 2|2 (5.13)
€1,5 Uplle(to.eiH2(00)) :
NP €1,6 . €16
BT € 5Far(tn + Amginim) + oo I llo e ez (514)
From inequality (3.4) follows that
n,l 1,7 _
1873001 < S lIoal )+ 2207 Ry, (5.15)

Using inequality (5.4) and the trace theorem it yields
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= A

< _—
Iy (w)] < "”1"1..2(1‘1 )t o La((tntn41)iH(R2))

And finally, similarly to estimation (5.16), it is not difficult to obtain

620l < B2l + ™7 | || gl )} (5:17)

|(tﬂ:tn+1)

Besides the obtaining inequalities we . will use the estunatmn of the norm
lvpllaqr 2y [1):

1,
||”p"%.,(r‘1,z) < co(gdﬁ,p(”ps vp) + bap(t; vp, "p))- (5.18)
We notice that
‘ ! o ,
dn (s"“" Ty < 2dna (67,60 +2tzdh,1(n;,n{), _ (5.19)
r=1

a.l(t + A[_1,£n+lf’, n+l/a) < —al(tn + Al nli’h) +
%a1(tn+Az 1'£n+(f—1)/s+§n+lfa £n+(r 1)/a+€n+i/a) (5.20)

At last, we have

s 1 ] s
S0 dua(nfn)) =3 (r = Aica)dna(nh, ) S 7Y dna(m, ), (5.21)

=1 r=1 =1 I=1
Ztnzdm(m,m) Z(Zrrr)dh.l(ni,ni)ﬁrsz-dh,l(ni,ni)- (5.22)
=1 r=1 r=1 =1

Considering the presentations (5.7), (5.12) and inequalities (5.18)-(5.22)
we will substitute the estimations (5.8)—(5.11), (5.13)—(5.17) into inequality
(5.2). As a result it is obtained -

1¢ —1)/s
dp 1 (6%, €71 + ;Zn / (Pragptt Diey2go 4+
= Iy,
-(1 €1,5— cobe’ )Zﬂﬂl(tu+ AV Enﬂl /e +§n+ua fﬂ+(‘ /e th) +
I-—

8
2¢
Y {(1-rera—TE1a - —601’38')dh.1(’?ia m)+
=1
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1 T‘
5(1 +é16+ CgﬁE’)Tlal(tn + ‘-_—Aﬂ——l; nia ﬂi) - ;I /

Iy,

(Paani)?do} <
2
2¢ n
(L4 7(ern +er2+ —o¢))(dna(€7,67) +
T = n— m n
k=1 1,2

where €' = €17 + 7618+ T€1,0. Let us assume

3 1
Ts< @, €10=¢€12= 3’ E13 = €14 = é-_;ﬂ, €15 = €16 = o

1 1
g&17 = ma E18=¢€19 = 12co‘r’

(5.24)

Moreover, let 7 < 1. Then (5.23) takes the form

1 ] Vs s
dra (€771, €041) + ;Z u ]r (Pra TV 2do + 5 Fia(nl) <
=1 1,2 =1

m
(14 7dra(€, ) + 53 [ (Praf ™™o + 97, (5.25)
Pk:l F(l,g
where
1
f}'a(vl) = (1 - Ot)dh’]('v], 'Dl) — n(al(t; 'Ul,‘!)l) + [; _/1" (Ph'yv])zda). (5.26)
1,2

The estimation of the functional g;"k brings (5.3) to the form

T . n+k/m
dr2(&5%1, 571 + - ) /F(k)(Ph,z 2™ o <
k=1 1,2

(14 7)dna(€3,€8) + %Z"' /F PreH 020 4 yn (5,27

i=1

Let us denote
T = n— m
0" = dp(£", ™) + —Z /(k)(Ph'QEQ +k/ )2d0. (5'28)
p k=1 r1,2

Using additive presentation (3.6) and notion (5.28) the inequality (5.27) is
summed with (5.26). As a result it is obtained the energetic inequality
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"+ Fra(n) < (14 7)8" + y7, (5.29)
=1

where the function 9™ = ¢} 4 ¢} depends on A, 7, p and on Sobolev’s
norms of the function u”. The form 4™ will be defined later. As one can
see from (5.29) the inequality

]
Y Fia(nt) 20
=1 »
is a sufficient condition for stability of method (4.2)-(4.4).

6. Stability

In this paper we will consider the scheme with constant step 7 = r/s.
In this case Fiq(v1) = Fo(v1). According to the condition of stability
iz Fia(nl) > 0 we have a sufficient condition

}-a('t‘.h) z 0, VU] € Vh,l- (61)

Henceforward, we will use vector-matrix form of condition (6.1). Let &
be a vector with components p; ;v1(Z;), where p{,- = dp,1(¥1,,%1,i). The

matrix A with elements mal(t;gal,;,cpl ) and the diagonal matrix D

with elements =~ [i. (Ph1¢1,)?do are also defined. Let us assume A, =
[T
A+ :-,D, then,
LT
Falv1) = (1 - a)||m]l - ;H‘b‘llfi,,- (6.2)

If the symmetric matrix My = (1 — a)E - TA, is introduced, then (6.2)
takes the form
Fa(v1) = (M1, B1)a. (6.3)

Thus the condition of stability is a nonnegativity of the matrix M,. Let
14,1l < Ay, (6.4)

and it is not difficult to note that A, = Aog(} + %), where positive number
Ao does not depend on h and p. It is defined

Apo=min{Ao: A, > |I4,],

1= a‘r/\p is a whole number },



On the explicit-implicit domain decomposition 97

- - 171 1
= %oz (5 + ;)° (6.5)
Let us assume . '
S = ETA',, (66)
then, '
MM =1-a- ) 1205 54> o) > 0.

P

Therefore, by virtue of (6.6) M, is a non-negative matrix. Using the
equality (6.6) and the condition 7s < a we may obtain the connection
between parameters 7, s, h and p. There is 724, < (1 — a). Therefore,
taking into account (6.5), we have

hz
Aoo(1+2)

Since a(1 — a) takes the maximum meaning for a = 1/2, then,

h 1
T< ”m (6.7)

From condition (6.6) (a = 1/2) it is obtained

2 < a(l - a)=

s=2%,0(14 h) - (6.8)

The formulas (6.7) and (6.8) are the conditions of stability of the consid-
ering method.

7. Error analysis (completion) =«

From inequality (5.26) with condition };_; F1.o(m) > 0 we obtain
gt < (14 7)0" + ¥, (7.1)
where

v =B (e + || 5

du?

|,
dtz Lz((tn 141 );L2)

du? 12
r (tn.tm))}'

The use of the grid Gronwall lemma ([6], p. 311) for the inequality (7.1)
considering the notxon (5.25) for 8” and the positive definiteness in L? of
bilinear form dj(v, w) gives the following estimation:

i) +7

+ 077 (WU + ey + 7|
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€1z, < ¢’ [Mah+ My + p~H(Mpph + M, 17)], (7.3)

where according to expression (5.5) and inequality (2.13) we introduce the
following notions:

M = |lulle) + " ||(to.t.) - " dt? " La(to,te)ils)’ (7.4)
My = lull(a) M, = M.

and vector-function u is the solution to problem (2.5), (2.6). Finally from
(7.3), the triangle inequality and the estimation of the interpolation in the
norm of space L, the resulting estimation follows.

Theorem 7.1. Let condition (4.4) for problem. (2.5),(2.6) hold. Then from
conditions (6.7),(6.8) for method (4.1)-(4.3) with < 1 and p < po the
following error estimation is valid C

l?aéxN flu™ — “p(tn)EIL < C[Mhh + M;T + P_I(Mp.hh + M.o,'rr)] »
where the positive numbers ¢ and po do not depend on h, 7, p and vector-
function u, the numbers My, M., M, and M, . are defined by formulas
(7.4). ‘

Thus the method (4.1)-(4.3), which is used for solving the problem
with nonideal contact (parameter p is fixed), has the error estimation
O(h/? 4+ 71/2), Similarly [6], the error estimation of method (4.1)-(4.3)
for solving problem (2.5), (2.6) follows from triangle inequality, the esti-
mation (2.12), Theorem 7.1 and the optlmlsa,tlon of the right-hand side of
obtaining inequality by parameter p.

Theorem 7.2. Let the conditions of Theorem 7.1 be valid. Then for method
(4.1)~(4.3) with p = ¢'(h + 7)'/? the following error estimution is valid

_ < 131/2 1.1/2
a0 = u(ta)lz, < e(MIAY? + Mirt),

where M}, = My, + Mph/2, M} = M, - + M,'/2

Thus, the method (4.1)(4.3) for solving problem (2.5), (2.6) has the
error estimation O(h'/2 4 71/2), Fall of the degree of h as compared with
[3] is the result of using lumping operators on compound grid. If we con-
sider the co-ordinate grid in the domain 2, then using the estimation (3.5)
instead of (3.4) we may obtain the error estimation O(h%* + 1'1/2) wrth
p=c (h:s/z + 1.)1/2
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8. Numerical experements

Let us introduce some test calculations by the suggested method. The
prime purpose is the confirmation of asymptotics of parameter s and Lo-
norm of error estimation, which are given in Theorem 7.2. It is possible to
draw a conclusion that the receiving estimations are not improved.

In the square £ = (0, 1)x(0, 1) we consider the simplest two-dimensional
parabolic problem with the Dirichlet conditions

d
E‘:’- = ADAU, (t, -'51’2:2) € (0’ 1) X Q’

u(tamlamﬂ =0, (t,ll?l,:cz) € (0, 1) X I‘?
u(0,21,72) = sinwz sinwzy, (21,22) € Q.

The exact solution to this problem is the function

—2Xo7m%t

u(t,zy,22) =€ sin 7z sin w2,

In calculations we suppose Ao = 0.05. For this value of parameter Ag
L,-norm of the solution within time ¢ = 1 reduces approximately in e™?!
times. We consider the following partition of the domain

Ql,l = (0,5/8) X (0,5/8), 91.2 = (5/8, 1) X (5/8,1), 91 = 91,1 U Ql'z,
92,1 = (5/8,1) X (0, 5/8), QZ,‘Z = (0,5/8) X (5/8, 1), ﬂg = Qg‘l U 92‘2.
All calculations presented below, have been carried out for square grid with

constant step hpi in the subdomain Q, ;. For the grid analog of Ly(2p,4)-
norm estimation in time ¢t = 1 we use the notion

21 1/2
Epk = { Z R [uM (21, 22,0) — u(l, 21,4, 22,)] } )
ielpk

where N7 = 1. L,-norm estimation is a set of equality
2 2 2 2 \1/2
e=(ehh+eha+en +e3)
Two series of calculations for co-ordinate square grid with constant space
step were executed. In the first case we suppose the step hy = hpx = 274,
in the second case we suppose the step hy = hyx = 27°. Parameter p is
defined by the formula from remark in Section 6

p= %(h3/2 + T)1/2.

As one can see from Table the parameter s with reduction 7 in 2 times
also reduces in 2 times. Besides with reduction h parameter s increased
approximately in 4 times. Thus formula (6.8) is confirmed.
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h=2"% h=2"5
T 8 € T S €
6 0.80140 25 1.4056
9-3 7 0.045848 9-3 26 0.041997
8 0.045851 27 0.041997
3 10.290 12 5.5024 107
24 4 0.032915 2-4 13 0.029793
5 0.032920 14 0.029793
1 "4.3852 -10° .6 6.0708 -10°
P 2 0.023903 2-5 7 0.021249
3 0.023913 8 | 0.021249
3 6.4076 -10%2
2-6 1 0.017712 2- 4 0.015347
2 0.017732 5 0.015347
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