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Calculation of time constant of particle
breeding by Monte Carlo method using
parametric derivatives

G.7Z. Lotova

The paper contains the results of time constant calculations for the process of particle
breeding. The calculations are based on the estimates of parametric derivatives of the
particle flux. The transfer process of radiation is assumed to be stationary.

1. Connection between parametric derivatives
and time constant

The following integral-differential equation is used as a standard mathe-
matical model of the stationary transfer process (see, e.g., [1], [2]):

L+ 38 =50+ 542+ fo, (1.1).
where
fo = fo(F,7), E=X(r¥), L®= GV (7, 7),

5® = / 5, (7, 5)Wo(5, 01, F)8(F, &) di,
v ‘

Sf@ = /V(F, '171)21'(7?, ﬁl)Wf(?T, 71, 17“)@(1-", 171) dvy, 7€ DC Rs.
A%

Here

®(F,7) is a particle flux (usually flux of neutrons);
V is a velocity space; 7 = vd, v = |¥;

24(7, ), Z5(7,7) and Z.(7,¥) are the macroscopic cross sections of
scattering, fission and absorption respectively;
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E=%,+Zs4+5

W(¥, 71, 7) is an indicatrix of scattering;

Wy(¥,71,7) is an indicatrix of fission;

v(¥,¥1) is an average number of secondary particles per fission act caused
by the particle of velocity #, at the point

fo(7, %) is a distribution density of the particle source.

The medium is proposed to be bounded by a convex surface. Assume
that ¥ = X, # 0 is on the outside.

Denote by 7* the time constant of particle breeding. This constant
determines (see, e.g., [6]) the exponential time asymptotics of the function
®. It is known ([6]) that addition of quantity 7*/v to the absorption
cross section makes the system critical, and that 7* is an eigenvalue of the
equation

ch+(2+%)<1>=3¢+5,<1>+f0. (1.2)
From here on ® means the depending on 7 solution of this equation.

G. A. Mikhailov [3] showed that for derivatives of ® with respect to
parameter 7 for any 7 and ¥ holds

mq)(mﬁl)(fg) *
m_I,noo ‘I’(m)(‘rg)_ =T —To,

where 79 is an initial value of 7. Similar convergence may be obtained {see
[3]) for the linear functionals

Jy = / / (7, 5) dids, Jp = / / S(F, 5)®(F, §) dFds,
DV DV

namely,
lim _,_mJi(m—l)(To)
R A(C
Therefore, to approximate 7* it is sufficient to choose 7o and find the values
of the derivatives J,-(m) (1o).
It was shown [3] that estimates of quantities J(™) can be found by
differentiation of the weighted collision estimate. This method will be

applied in the sequel. The variances of the estimates are finite if the
inequality

=7t -1, 1=12.

z, z
sup (E+V2_E}£) =¢<1 (1.3)

holds. This condition will be used to determinate .
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2. Results of 7* calculations based on diffusion
approximation

Let us consider transfer process with constants
=1, Y¥;=003 X,=097, E.=0, v=25 v=1 (2.1)

in a ball of radius R. Assume that all the particles are of equal energy and
the process of scattering is isotropic. We will use the diffusion approxima-
tion with extrapolated boundary as a mathematical model of the process
(see [2])

A®(r) + e®(r) = —g(r), @lR+a/E = 0. (2.2)

Here g(r) is a three-dimensional distribution density of the isotropic particle
source, r = |7], ¢ = 3(v=1)L;Z, = 0.13095, a = 0.71044. The critical value
of R in the context of approximation (2.2) is expressed by formula ([4])

T 2~ 7.971107.

3w -1)5y, I

The system with constants (2.1) and R = Rer is evidently critical. As
noticed above (see Section 1) the system remains critical if one add the
quantity 7*/v to the absorption cross section. Thus, 7* = 0 in our case.
Let us replace ¥ by (54 7/v). Then the value 7* = 0 will be the eigenvalue
of problem (1.2).

Let us take as an initial one the value of 7 which guarantees finiteness
of the variances of weighted estimates. The parametric derivatives will be
calculated at this point. Criterian (1.3) implies

Rcr =

by )
~s 2 f
E+T/U+V E+1/v <

1, % > T, + 25 - 5 = 0.1575.

Therefore, the numerical experiment was carried out for 7o = 0.16 and the
ball radius equal to Rr.

With the Green function G(r,r’) for the equation (2.2) we obtain for
g(r)=46(r"—r)

sin(a + b — 7/¢)
4rrsin(a+b) ’

&(r) = G(r,0) =

where
a

Z+1/v

a=Ryc=28845 b= Je.
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The quantity ® means the total particle flux measured at the centre of a

ball which is induced by the “unit pover” source placed at the distance of

r from the centre.
Put

) (2.3)
0, otherwise,

1/r, Ro<r<R,
(r)=

where Rg is a constant small as compared to R. Then the solution of
problem (2.2) for r = 0 takes the form

8(0) = / B(r)g(r) dr.

D

Consider the following integral as an initial functional (taking into ac-
count the Jacobian r2) :

R
Jr) = (S+ %) 9(0)= (T + %) / &(r)r’g(r) dr
0

= P(fi - cos(Rov/)fz - psin(Rov)),
where P is a constant, H = a4/c = 0.257097,

p=S+ % h= %, fr=pctgla+ H/p).
The derivatives of the functions f; and f; with respect to T are equal
to )
fi= %fl+%flf2+;£t%, fr= —f2+;( fz),
I = 2I:3f2 (f{ - %) ;= ﬂfjf’ (1 + ;2)
© =2 (g-L) (n-an+ B,
1= 2 (14 ) (n-an s 1),

(4)=g(,_g)
1 P5 1 p

(4)_8H2 f2
L’ = —(1+—§

p
2 1) (2H 3%+ 3’:f2).



Calculation of time constant of particle breeding 31

The results of computations for Ry = R/5 and Ro = R/3 (see Table 1)
confirm the convergence

™ =————+1g— 7 =0 as m-— o0

Table 1. The results of 7* computations based on the diffusion approximation

Ro = R/5 Ro = R/3
™ uemyp ] ™|
1 —267.725 | —0.0592 | —228.614 | —0.0573
2 3428.76 0.0038 2923.80 0.0036
3 —64289.3 0.0000 | —54821.3 0.0000
4 1607232 0.0000 1370532 0.0000

3. Calculations of 7* based on the simulation of
trajectories

We study here the transfer process examined in Section 2, which is char-
acterized by the same constants (2.1) and R (R = 7.971107) and the same
distribution density of the particle source (2.3).

Consider as an initial functional the following inner product:

J = 2(0) = (&(r),4(r)).

It is convenient for this problem to use the adjoint transfer equation (see
[1]). By the theorem of optical mutuality (see [1]) we find

J = (8(r),6(r)) = (2*(r), 9(r)),

where ®*(r) is the solution of the adjoint equation
* T * * * /
L™ + (2+ ;) d* = §&™ + 5,9 + 6(r).

Thus, to find the functional J one can simulate the transfer precess from
the source with density §(r) and determine the reading of detector with
the weight function g(r). '

It was remarked in Section 1 that to estimate J(™) one can differentiate
the collision estimate. For the nonphysical collision chain with the initial
density '
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(X -+ 7o) exp (= (X + To)ro)
7

7(z0) =

and transition density

. Tk, . (E-i-ro)exp(—"rolf‘— fil) . F—-1
= = — 5 . e———
(%1, %) S+ Towkl(”s”hﬂ |7 — 712 et |7 — 7]

the estimate of the functional J equals

N
£=3 Qnolen).
n=0

Here z = (7,%,k), k is the number of the collision type ([3]), @, are
auxiliary random weights calculated by the formulas

_ f(:t‘o) ) = L r k(mn-—lazn)
PO= Ty T T S e

f(z) is the density of first collisions,
_ (Z 4+ 10)exp(—(Z + 70)r0)

2 9
To

f(zo)

k(z1,z) is the distribution density of the average number of secondary
collisions followed the collision of the particle having the velocity #) at the
point 7; (see [3])

[=)

Lk . I
k(zq,2) = “;5‘”1 Wy, (¥, %y, 7)

—

|7

Eexp(—r(v"'l,f',ﬁ))é(a_ F— )
T

G =y
The quantity i takes value 2.5, when the fission occurs, otherwise #; = 1.
The following representations for the weights can be obtained by simple

transformation:

_exp(—(7 — 10)r0) _ - exp(=(7 = mo)tn)
QU(T) - T To 2L ’ Qn(T) =Un v ¥ 70 ]

where i, = v™», m, is the number of fissions up to the n-th collision of
particle, ¢, is total path time of the particle up to the n-th collision.
Differentiation of the weights m times yields

g ()

E-l-To ’

(m) (. \ — (m)(y _ 5 (D™t
T0) = = Uyt
Qo ( 0) Qn (TO) Un T+ To
It was pointed out in [3] that the variance of the weight estimate can
be decreased by simulating the process without absorption, but with the
replacements
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vy f

— —_—.

e+ X,

As the result of this replacement the trajectories (and computation
time) grow about 7 times longer. The data presented in Table 2 show that
the approximation errors of 7+ and 7, (20 000 trajectories being used) are
in order of magnitude less than those of 7, (100 000 trajectories), which
were calculated on the trajectories without the replacement (3.1). The
quantities ¢.,, &, G, are the majorants of the mean square errors.

Y=L+ X, v (3.1)

Table 2. The results of computations based on the Monte Carlo method

Ro = R/5 Ro=R/3

m a4 Om 5 L dm T
1 | 0.043£0.003| 0.044+0.001 | 0.0700.001
2 | 0.011£0.006 | 0.01240.002 | 0.0310.002
3 | 0.003£0011| 0.005£0.003 | 0.0150.002
4 | 0.001£0.017| 0.003£0.004 | 0.007 +0.004
5 | —0.00640.025 | 0.001+0.005 | 0.004 % 0.005
6 | —0.01040.036 | —0.0003 +£0.006 | 0.001 = 0.006
7 | —0.015+0.050 | —0.002 +0.008 | —0.001 £ 0.008
8 | —0.019+0.068 | —0.0040.010 | —0.003 £0.010
9 | —0.02440.086 | —0.006=0.012 | —0.005 £ 0.012
10 | —0.030+0.107 | —0.007£0.015 | —0.006 0.015

As noted in [3], the convergence 7* to 0 is better, when g(r) is a more
exact approximation for ®* (see Table 2, where value Ry = R/5 corresponds
to the better approximation).

Notice that we observe some negative drift of the estimate 7, for suf-
ficiently large m. Similar phenomenon appeared also in [5]. This effect
could be explained by the tendency of understating (in modulus) of high
derivatives by the Monte Carlo method.

The author is grateful to Professor G.A.Mikhailov for the formulation
of the problem and permanent attention to the work.
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