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A numerical algorithm for simulation
of two-component flows
in the Earth’s mantle

Z.A. Liapidevskaya, [V.E. Petrenko|

The equations of motion of a two-component isothermal viscous fluid for two
cases are considered, when 1) velocity—pressure and 2) stream function - vortex
are taken as unknown variables. Such equations can, in particular, be used for the
mathematical simulation of some geodynamic processes. The algorithm of numeri-
cal solution of the two-dimensional equations is given for the following variables: a
stream function, vortex, concentration. An example of the numerical calculation is
presented.

1. Equations of motion of a two-component high
viscous fluid in velocity—pressure variables

We consider the model of two-component medium consisting of izothermal
incompressible viscous fluid of the density pg; and of a heavy component
of the density poz and of small mass concentration C. The model is ap-
plied for simulating of slow convective flows in the Earth’s mantle with the
characteristic scale of 1 cm/year.

The Navier-Stokes equations may be written in the form [1]:

Vv
— = Vet pV2V + poi (14 BC)g. (1

Here p is the density of mixture, V is the mean velocity of mixture, p is the
pressure, p is viscosity, g is the gravity acceleration, # = (po2 — po1)/poz is
a relative difference of density of the particles and the fluid.

The equation for concentration takes into account the falling velocity a
of particles according to the Stokes law [2]:

oC ocC

In the Boussinesq approximation, we obtain the following equations of
motion for a two-component isothermal viscous fluid:
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dVv 1
== _avp+ vV + (14 BC)g,

3)
aC oc (
§+VVC_a——ay, divV =,

where v = p/pg; is the kinematic viscosity of the first liquid component.
Unknown functions in (3) are the velocity vector V, the concentration C,
and the pressure p.

Let us consider the following reference scales of length, velocity, density,
viscosity and concentration difference: d, a, po;, vo, AC, also considering
the pressure in terms of the hydrostatic equilibrium state Vp; = po;g. Then
in dimensionless variables, equations (3) will take the form

_,dvV

(A)™'25 = —Vp+ V2V — Ra,CH,
ic o e 4
W-FVVC:%, leV=0,

where - is the unit vector along the y axis. The set of equations (4) contains
two dimensionless parameters: the Rayleigh number

2
Ra, = P9ACE 5)
pa
describing the convection intensity and the sedimentation number A, =
v/ad.

At the reference velocity a ~ 1 cm/year, the width of a stratum d ~
10% km and the viscosity p ~ 10*' P we have A, ~ 102°, Therefore, the
inertial terms in the Navier-Stokes equation can be omitted and (4) may be
written as follows

-Vp+ V3V —Ra.Cy =0,
aC ac (6)

E-+~vvc:=5!7, divV = 0.

Consider the motion of mixture in the two-dimensional rectangular do-
main (z,y) with the length ! and the height d. We search for a solution of
(6) in the form

Vi) =uvv, C=Cloyt), p= p(z,y,t).
Consider the boundaries of the domain as rigid walls with a slip condition

of fluid. On the lower and the upper boundaries we set the condition of zero
shift stress:
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S ( du + 6v)
2y = H dy  0z)’
In addition, on the side boundaries we set a symmetry condition. We con-
sider the concentration of impurity as a given function with respect to time

only at the upper boundary: C(z,d,t) = Cp(t). The boundary conditions
in the plane case become

v
u =0, 37 = 0 at z=0,L/d, 0<y<1,
v=0, %:0 at y=0,1, 0<z<L/d, NG

C=Cot) at y=1, 0<z<L/d.

2. Equations of motion of two-component hlgh
viscous fluid in stream function—vortex
variables

If we eliminate from (6) the pressure term, and as new independent variables
consider the stream function :

__ _9%
u= 6y v= oz (8)
and the vortex 5
v u :
= %z 9y’ (9)

then we obtain the following set of equations describing the convection due
to sedimentation in the Earth’s mantle by variables (1, £):

ac

Vi =¢, (11)
oC 9Cu 08Cv 08C
5t T o Ty ~ oy (12)
0?2 02
2 _
where V =547 + oy

The boundary conditions for the variables (1, £) in a plane case are the
following: The boundary conditions for the variables (3, £) in a plane case
are the following:
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p=0, £€=0, at 2=0,L/d, 0<y<1,
=0, £€=0, at y=0,1, 0<z<L/d, (13)
C=0Co(t), at y=1, 0<z<L/d.

At the time ¢ = 0, inside the cavity the concentration distribution is given as:

C =Ci(z,y,0). - (14)

3. Difference method for solution of mass
transport equations

Let us describe the difference method of solution of (10)-(13) for a two-
component highly viscous fluid. As it consists of the Poisson equations for
a stream function 9 and a vortex &, and of the equation of mass transport
for the concentration of mixture C, we should separately approximate each
of these gquations.

3.1. Difference scheme for the Poisson equation. Consider the
Dirichlet problem for the Poisson equation in the rectangular domain G
with the boundary I':

?u 0%

a9 a2 — 1Y) ] G7

92 T gz = TPy, ()€ (15)

u(z,y)|r = 9(z,9)-

The difference approximation for the Poisson equation is reduced to the
solution of the system of linear algebraic equations [(N — 1)(M — 1)]? with
a block three-diagonal matrix of coefficients:

CiUr + BoU; = i,
AiUiy + CU; + BiUyyy = F;, (16)

AM-1Upm—2 + Crm-1Upm-1 = Fry—1,

where U; = (u;1,%i1, ..., N-1)7 is the solution of the system in the differ-
ence grid nodes, A;, B;, C; are (N —1) x (N —1) matrices, F; is the right-hand
side of the system, i=1,...,M -1, j=1,...,N — 1 are the internal grid
nodes. Thus, A;, B; are diagonal matrices, and C; is a three-diagonal matrix.

The distinct feature of the linear system of the algebraic equations (16)
for a difference grid with a large number of nodes is that its sparse five-
diagonal matrix has a high order. The ratio of the minimal eigenvalue o,
to the maximal eigenvalue o, for the obtained five-diagonal matrix at mesh
step h = const looks like [4]:
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TL_ g2 Th

=tg* —.
) & 2

At h — 0 we have

a1 _ 7F2h2 4
= T O(HY).

Due to smallness of this value in the case of a large number of nodes,
“there is a poor conditioning of system (16). For this reason, the obvious
iterative methods for solution of this system converge slowly. This fact
underlines the expediency of usage of the direct methods for solution of the
systems under consideration.

3.2. Method of solution of system of linear algebraic equations
with a block three-diagonal matrix of coefficients. The wide-spread
methods of solution of the linear equations (16) are iterative. Thus, as the
given set of equations should be solved twice (for the functions 3 and &),
and then the process is repeated for each time step, the computer costs
essentially increase.

In the given paper, the direct method of solution of the block three-
diagonal system (16), based on the usage of orthogonal transformations of
reflection, reducing transformation of the initial matrix of the system to the
two-diagonal form [5] is used. Advantages of this method are the following:
the orthogonal transformations hold the norms of vectors and, consequently,
the numerical errors do not increase in calculations. The conversion of a
matrix is done only once, and the calculated reflection vectors are written
into the initial matrix, which takes the following form:

x| *

4
* | ¥ | ¥ *

| K| | *

*

i.e., vectors of reflection are written into a matrix having a block four-
diagonal structure. The problem consists in keeping only non-zero entries
of such a matrix and their further use in the process of calculation.

This method was well reasonably tested [6, 7], and it has shown sufficient
stability and reliability in operation.

3.3. Difference scheme for concentration equation. Consider the
equation of concentration in the following form:

oC | aC | 9C
= 1
ot os Ty =0 1)
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or taking into account the equation of continuity we write it as conservation

faw aC  9Cu 8C
- u v
B + oz + a_y = 0. (18)

This equation is approximated according to [8].

Let us consider in the plane (z,y) a rectangular grid with the mesh sizes
hz, hy on the appropriate coordinate axes and a cell with number (t4+1/2,

j+1 J+1/2). Let us assume the value of the function
C in the cell to be constant. The purpose is
to determine the value of the function C on the
n+1 time layer by its values on the n time layer.
. To construct the difference scheme, we use
A 72 i+1 . the Gauss-Ostrogradskii theorem reducing the
Figure 1. Gridpoints for volu.me integral from divergence of the vector to
(i + 1/2,j + 1/2)-th cell the integral over flow through the boundary of

the closed domain

fdivadw:fn-ada,
w [

where w is the volume limited by the surface o, n is the basis vector of the
external normal to the surface o.

Integrate the \equation of transport of concentration (18) for the vol-
ume w:

f(ac dCu _ 8Cv

=~ = = dz d dt
T ar T ay)dtdwdy fa(C rdy+ Cudtdy+ Cvdtdz),

j+1/2 x 4

where w corresponds to the mesh (i + 1/2,5 + 1/2) and the time 0, 7. Let
us pass to the integral on the lateral boundaries. As a result, we obtain

(Cﬁjil/z,jﬂ/z - Claaipry2dhahy +
T(C“|?+1,j+1/2hy - Cu'?,j+l/2hy + C”|?+1/2,j+1hr - C”|?+1/2,jhr) = 0.

It follows that

mn n 1
Crlzite = Chayaivija = T[(C“|i+1.j+1/2 - Culzﬂuz)g; +

n 1
(CU|;'+1/2,J'+1 - CU|?+1/2,J')E

] =o0. (19)
The values u, v on the lateral boundaries of meshes are determined ac-

cording to the formulas (8) using the values of the function 1 at the nodes
of the grid:
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Vi1 — i _ Vi — i
) .

Uij+1/2 = Iy Uitz = p—  (20)

The values of the function C on the lateral boundaries are determined by the
velocity sign, as equation (17) is of the hyperbolic type, and the equations

for characteristics have the following form:
dz dy
-(E = u, E; =v (21)

Thus, we have

c _J Gy g2 20, _ { Cijy  Yig1/2; 20,
.'.+1 2 = '+1 2‘ : =
WHT G Uij+1/2 <0, FH/ Citry Vigr/2,5 < 0.

Let us consider the problem of choosing the time step. Going from the
step n to the step n41 we chose the interval 7 so that perturbations from the
nodes of the difference grid could not be outside the given mesh. According
to (21), this means that in the plane case, 7 should be given from the relation

hmin

= max(luy i1zl Vigaya,l)’

(22)

where A, is the minimum step of the spatial grid on i, j.

3.4. Algorithm of solution of the boundary value problem for (10)—
(13). The boundary value problem (10)-(13) with initial conditions (14) is
solved by time steps. Thus, the values of the v

functions &, v are calculated at the nodes of the I+ * ¥é
difference grid (7, j). Concentration C is calcu-

lated at the centers of cells (i+1/2,741/2), the v x xC xu
horizontal component of the velocity u is calcu-

lated on the lateral boundaries, and the vertical Je % ]
component v is calculated on the upper and the ! v +1
lower boundaries of the mesh. Figure 2

The algorithm of calculation has the following stages:

1. Definition of concentrations Cit1/2,j+1/2 at an initial time t, = 0
(n = 0) by relations (14).

2. Calculation of a vortex §;; (¢ =1,2,...,.M -1,j=1,2,...,N = 1)
using the difference approximation of the form (16) applied to the
vortex equation (10).

3. Calculation of the stream function %;; (i = 1,2,....,M -1, j =
1,2,...,N — 1) using the difference approximation of the form (16)
for the stream function equation (11).
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4. Calculation of the velocity components Ui (1=0,1,...,M, j =
0,1,...,N-1) and Vit1/2,5 (1= 0, l,...,M-1,7=0,1,..., N) using
the difference approximations (20).

Using the calculated values of velocity, the time step 7, is defined
according to (22) and the transition to the next time layer lny1 =
tn + T, 1s carried out.

5. Calculation of the concentration Ciiy/5;41/2 at the next time step
with the help of the difference approximation (19) for the equation of
concentration transport.

6. Transition to the next step. The process lasts until tn41 reaches the
given maximal value 7.

4. Numerical calculations

The above described method was applied for the numerical solution of some

two-dimensional problems on concentration instability in the upper mantle

- of the Earth. As an example, we consider the problem of plume evolution.

The medium is considered as a stratum of light substance located under

a stratum of a heavier one. Due to perturbations at the interface between

the upper heavy fluid and the underlying light fluid, the Rayleigh-Taylor

instability develops [9]. The initial configuration of layers in the rectangular
domain at ¢t = 0 is shown in Figure 3. ’

y
1
C=1
0.2 '
0.16
C=0

1 r

Figure 3. The initial configuration of flows at ¢ = 0

The interface divides the heavy (C' = 1) and the light (C' = 0) fluids
with the densities p; = 3.315 g/sm® and p; = 3.3 g/sm?, the viscosity u
of fluids is equal to 10?2 P, the width and the height of the domain being
set equal to 700 km. The.remaining parameters are selected so that the
Rayleigh number Ra. = 218.

The calculations were carried out on a regular rectangular 100 x 100 grid.
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Figure 4. The concentration levels: ¢ = 0, 30.3, 40.5, 49.1, 67.4, 94.4 m.y.

In Figure 4, the process of upwelling of the light fluid is shown, where it
is possible to observe the creation of the plume near the symmetry axis and
its spreading along the upper boundary of the domain.
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