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Test nonlinear heat transfer equations
with known solutions

0.A. Makhotkin

A class of nonlinear 1-D parabolic equations with known solutions are introduced. The
computer programs for estimation of the absolute errors of numerical methods are de-
cribed.

1 .. | Introduction

Nonlinear one-dimensional heat transfer equations are now the standard
tools in many engineering applications [1]. There are different numerical
methods for their analysis: finite differences, finite elements, etc. The errors
of the numerical solutions are caused by space and time discretization. The
absolute values of the error are as a rule unknown explicitly and only their
estimations can be received through the repeated solution of the same
problem with decreased space and time steps. The objective of this work
is to describe the system of one-dimensional nonstationary nonlinear heat
transfer equations with known solutions. The numerical solution of the test
equation can be compared with their analytical solution for receiving the
values of the computational errors. The computer programs for receiving
the exact solutions and the example of their using are briefly described.

2. 'Tést, equations

The test heat transfer equations have the form

9 aT
= a(kogg(T)E) —aG(T), 7>0, 0<i<L,
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where g1, g2 are dimensionless functions, F(7), G(T) have the dimension
of the temperature.
The standard transformation to dimensionless variables
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In general case, only the numerical technique is applicable for the solu-
tion of equation (1). For the receiving the exact solution we must choose

the special form of the nonlinear functions

91(8) = 92(0) = 9'(0)-

The introduction of the new dependent variable

u = g(6)
transforms the nonlinear problem (1) into the linear one

32
%%:a—;—An, t>0, 0<z<1,

du

[
ule=o = uo(2) = 9(6), 5, -

|.'L'=0 6:1: r=1

The solution to problem (3), (4) for
ug(z) = const = f(0)

can be represented in the form

u(t,z) = f(t) - ) Uj(t) cos(A;z)
3=1

=0, ==| =Bi(f(t)-u).

(2)

3)
(4)

(3)

where the eigenvalues {);} are defined as the positive roots of the charac-

teristic equation
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ysin(y) = Bicos(y)
and | |
U;(t) =‘/0 dsH(s)exp(—7;(t - s)),
=AM+ A 20,
H(s)= Af(s)+ f'(s).

After calculation of the sum (5) with high relative accuracy we can receive
the solution of the nonlinear problem (1) by using the back transformation

0 =g Y(u).

The relative accuracy of 6 can be connected with the realative accuracy of
u:

u + 6u = g(6 + 60) = g(8) + g/68,

06 . |6u
o = || < Kol | = Koo
_ g9(9)
K, = max 8@ (6)

Maximum in (6) is defined over the range (0 < 8 < 10).

3. Nonlinear transformations

Nonlinear transformatins (2) must satisfy some conditions for preserving
the physical sence of the boundary problem (1) :

1) because u(t,z) represents the dimensionless temperature,
0<g(f)=u< o0 for0$0.<oo,
2) functions (g1, g2) must be nonnegative, therefore,
g'(6) >0,

3) for reducing the number of the transformation parameters it will be
usefull to put

9(0) =0, g(oo) = o0, g(l) =1,
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4) the change of the relative accuracy, defined by (6), must not be too
large,

5) the nonlinear problem (1) must have some similarity with the real
situation.

For example, function g(@) = 6* can simulate the radiative-conduction
heat transfer. Seven transformation g = gr(6) was realized in computer
programs which will be described below. These transformations are repre-
sented in the table

Standard nonlinear transformations

Itr 9(6) g'(0) K,
1 0 1 1
2 92 20 0.5
3 gt 463 0.25
4 exp(fln2) -1 In(2) exp(f1n 2) 1.44
5 g1/2 0.56-1/2 2
6 g/4 0.250-3/4 4
7 In(1+8)/1n2 1/((1+6)In2) 2.53

For linear problem (4) the function f(t) plays the role of the external
temperature. If

0Sfm.in$f(ﬂ$fmax<°°a

then
fmin <u< fmax,

therefore,
g_l(fmin) <6< g-l(fmax)-

The coefficient

g_l(fmax)_g_l(fmin) (7)
fmax - frnin

estimates the value of the decreasing (K < 1) or increasing (K > 1) of

the temperature gradients after the nonlinear transformation. The transfor-

mations with Itr = 2,3,4 decrease temperature variation, with Itr = 5,6,7

— increase.

K =

4. External functions

The external functions f(t) are taken in the form
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i
)= pifmi(t), (8)
i=1
where p; > 0, >.p; = 1, m; € {1,2,3,4}. Basic external functions f,
represent four main types of temeperature variation [1]
m = 1: Nonresonance relaxation from fy to fena
fl = fend + (fO - fend)exp(—t/trel)
ta#t;=1/vj, Jj=1,...,00.
Positivity conditions: fy > 0, fend 2> 0.
m = 2 : Resonance relaxation from fo to fend
.f? = fend + (fﬂ - fend)exp(—t/t;j)
trel = t; = 1/7;, for some j.
Positivity conditions: fo > 0, fena > 0.

m = 3 : Periodic osillation around fp

f3 = fo+ (fo— fmin) sSin(27t/20sc)-
Positivity conditions: fo > 0, fiin = 0.

m = 4 : Relaxation from fy to fenq with oscillation

f4 = fend + (fO - fend) COS(QWt/tosc) exp("‘t/trel)-

Positivity conditions: 0 < fy < 2 fend, O
2fencl < fO = fend(2 + R), R >0,

(1+ Z%H)Y2 < (1 + R) exp(—ZYmin),

where Z = tosc/(2trel), Ymin = ™ — arctg(Z).

The nonnegative weights p; in (8) are defined by their relations. For

example, for n = 4 the relations 2:1:1: 1 define p; = 0.4 = 2/(24+1+1+1).

5. Computer realization

Calculation of the exact solution of eqauation (1) was realized on Borland’s
Turbo Pascal 6.0 for IBM PC. The computer code consists of the Pascal
unit TestTpul.pas and two programs, Stepl.pas and Step2.pas.
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The program Stepl.pas prepares the data for next steps of caclcula-
tion. The program Step2.pas demonstrates the example of the estimation
the accuracy of the numerical solution of the test nonlinear heat transfer
equation by the simplest finite-difference scheme. The file readme.pas has
the short instruction for users, the files tstresl.pas, tstres2.pas, tstres3.pas
contains the results of running the test problem.

The input data for the test example are listed below in the left column
of the table:

1.36 Bi = 1.36, this value Bi gives A} = 0.91663,

-0.27 A =—0.27 (A+ A} > 0) the response time t,y, = 1.54648,
3.0 tmax, the limiting time for drawing f(t),

4 n = 4, the number of the basic external function in (8),
11.0 m =1,p ~ 10,

0.51 2.356 1.37 fo, fena and trq for fi,

21.0 my =1, p2 ~ 1.0,

0.51 2.356 1 fo, fena and 3 =1 for f3,

30.13 my =3, pa ~0.13,

0.51 0.1 0.38 fo, Fein and tose for f3,

4 1.0 my =1, ; ~ 1.0,

0.51 2.356 0.5 2.0  fo, fend, tret and fosc for fi.

The program calculates the values fmin and frax

fmin=0.51, fmax=2.121337.

On the screen the user sees the external function f(t) for 0 <t < tax = 3.0.
This picture can be printed with any screen-printing program which works
in the graphic regime. Then the user can see the table of the standard
transformations with computed values of K, for every transformation.

5 Itr =5, g=91n, 0 =u?.

The results of the first test is demonstrated on the screen: the values
of the stationary part of the sum (5) and the steady-state solution of (3)
in the knots of the uniform grid. The maximum relative error defines the
number of the correct digits for computed values of u(t,z):

MaxRelError=3.634845e-7, Ndig=6.

For nonstationary state the arruracy will be not worse than for stationary
one.

After the arruracy determination, the user must define the time for
which he whishes to calculate the sum (5). If problem (3) has the steady-
state regime, the sum (5) for ¢ > t,, will be very close to stationary
solution. In the test example the external function contains the periodic
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component f3 and ¢ = 2.0 is not larger sufficiently #sys = 1.55. The results
of the running of the program Stepl.pas are saved in the file tstresl.pas.
The program Test2.pas demonstrates the application of the test pro-
grams. Nonlinear problem (1) is solved on the uniform grid with éz =
1/mX, (mX = 5) by explicit finite-difference scheme with constant time
steps '
8t < 0.5(6z)% = 0.02.

Results of the computations are saved in the file tstres2.pas for 6t = 0.01
for times t = 0.1k, kK = 1,...,10. The file tstres3.pas contains solution of
the same problem with 6t = 0.005.

References

[1] Y. Yaluria, K.E. Torrance, Computational Heat Transfer, Hemisphere Publishing
Company, Washington, 1986, 118-147.



