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A qualitative theory to explain
the fractal properties of convective
turbulence*

V.M. Malbackov

The hydrodynamics statistical model which qualitatively explains the fractal
features of the atmospheric convection has been suggested.

1. Introduction

It is well-known from the data of measurements that the turbulent struc-
tures of various scales are similar to one another [5]. This phenromenon
is clearly exhibited by convective turbulence. Individual convective pul-
sations (sometimes called convective cells) of the turbulence range in size
from millimeter-sized perturbations [1] to thermals, cumulus, thunderstorm
clouds, and convective supercells [13]. Such supercells range in size from tens
of meters to tens of kilometers. An isolated convective cell is an atmospheric
thermal which is by 3 to 4 orders of magnitude smaller, and a thermal is
a miniature convective cloud. Also, the quasi-ordered mesoscale convective
structures, cloud rolls, and cloud supercells of honeycomb structure sur-
prisingly resemble (on a scale enlarged by several orders of magnitude) the
quasi-ordered structures which occur in a viscous liquid during convection
between two flat plates with different temperatures.

It is a tradition to use two methods, the probabilistic and hydrodynamic
ones, in the simulation of turbulent flows. The comprehensive models based
on the hydrodynamic equations describe a complex process which has some
probabilistic properties and is close to a stochastic process. The probabilis-
tic models based on the processing of measurements have similar properties.
The hydrodynamic simulation of microscale convective turbulent regimes is
realized with the use of the Boussinesq equations [2, 4, 6], and the mesoscale
regimes are simulated by using the equations of deep [16] and shallow [3]
convection. In these equations, the microscale turbulence is parameter-
ized in one way or another. The large eddy simulation approach [3, 16]
in which the turbulent pulsations smaller than 100 m are parameterized is
widely accepted. Such models can give an accurate description of the be-
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haviour of an ensemble consisting of thermals and convective clouds which
interact with one another. There are models in which a part of the entire
range of convective pulsaticns incltding thermals and convective clouds is
parameterized [13]. Such models serve to give a qualitative explanation of
the structure of the quasi-oraered mesoscale formations mentioned above.
There are also models in which tLermals and convective clouds preserving
their individual structure in certain conditions form quasiordered clusters
shaped as extended lines and irregular hexagons [10].

It is assumed in the model being proposed that an isolated convective
pulsation, called a convective cell, is an eigensolution to the thermohydrody-
nainic equations, and turbulence is generated by a nonlinear interaction of
cells. The so-called simplified Boussinesq equations are used to investigate
the interaction of several convective cells located above each other [10-12].
A criterion of stability fur the cells of an adiabatic atmosphere was obtained
in [11]. It was extended to the more general case of a polytropic atmosphere.
In this paper, we give a rigorous justification of this hypothesis. The model
does not simulate the three-dimensional structure of a convective ensem-
ble. Nevertheless, it was possible to formulate a reasonable hypothesis on
the statistical structure of the ensemble, transfer from the hydrodynamic to
statistical simulation, and obtain relatively simple spectral relations. Some
expressions for the convective fluxes of heat and momentum are obtained
by averaging over the entire spectrum. These expressions are used to sim-
ulate the interacting convective cells of the next hierarchical level. It is
shown that in the framework of the simplifications of the vertical boundary
layer, as well as of other assumptions described below, the parameterization
of smaller convective pulsations reduces to the multiplication of the coeffi-
cients of molecular, turbulent viscosity, and heat conductivity by a constant
factor. Thus, the theory proposed gives a justification for the use of the
Boussinesq equations in [10-12] to explain theoretically the space and time
scales of thermals and cumulus clouds.

2. Simplified hydrodynamic model
Consider the following simplifying assumptions:
1. The convective cells are produced by axially symmetric pulses of heat

and kinetic energy that are located above each other.

2. The interaction between only the cells located along the vector of buoy-
ancy forces, i.e., along a vertical line, is taken into account. These two
assumptions allow one to consider the process as axially symmetric.

3. It is assumed that the vertical size of cells is larger than their horizon-
tal size, because the viscosity and buoyancy forces affect the vertical
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propagation of convective perturbations. This assumption makes it
possible to simplify the Boussinesq equations due to the theory of
vertical boundary layers [8, 11].

4. The temperature and density of the liquid are related by a linear law,
p = po(l — k¥), where 9 is a temperature deviation from an unper-
turbed state, @ = 6y — oz (o = const); p and pg are the density and its
average value in the unperturbed liquid; k£ = const is the coefficient of
linear expansion.

5. The coefficient of viscosity v and the coefficient of heat conductivity
p are constant and equal: v = p (i.e., the Prandtl number Pr = 1).

With these simplifications, the Boussinesq equations are [8, 11, 12]:
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where ¢ is the time; r, z are the radial and vertical cylindrical coordinates
(2-axis is directed upwards); u, w are the radial and vertical velocity com-
ponents; A = kg; g is the acceleration due to gravity.

It is known that in the boundary layer equations the terms that take into
account turbulent viscosity and heat conductivity along the layer are small
(8]. It was, however, shown in [11, 12] that the solutions that do not take
into account the last terms in (1), (2) can be hydrodynamically unstable,
and the criteria of this instability are determined by solving (1)-(3). The
stable solutions with and without vertical viscosity must not differ greatly
from each other, otherwise, the above assumptions are not valid.

3. Solutions for several simultaneous heat pulses
in an unbounded domain

We take several axially symmetric heat pulses extended vertically as initial
conditions for (1)-(3):

at t=0: ﬁ*ﬂ (—i)f(z) w=0 (4)
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where fo(2) determines the vertical distribution of 9. This function is
nonzero on several disjoint intervals. The attenuation of @ with r is de-
termined by the parameter 7o, With heat pulses released at several points
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with coordinates r =0, 2= 2; (1 = 1,2,...,n), ro =0 and fy # 0 for z = z
and f=0 for z # z; at t = 0.

We add to these conditious the law of heat variation in the system which
is obtained by integrating (2) in the space
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where g, is the amount of heat released at the initial time; p and ¢, are the
density and heat capacity of the air at constant pressure.

We solve the Cauchy problem for (1)—-(3) with the initial conditions (4).
The solution is sought in the following form:

w = WPa(t)p(t) exp(~ar®/2) £ (2,1), (6)
u = —(@e/r)(1 - exp(-ar?/2) 2 7
9 = (4%ap:1(t)/2) exp(—ar?/2)f, (8)

where a(t), ¢(t), ¢1(t), f(z,t) are unknown functions.
Substituting (6)-(8) into (1)-(5) and equating the terms with equal pow-
ers of r, we obtain the following problems:
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Q = Q. is the buoyancy of a cell (a quantity proportional to the amount
of heat contained in the cell).
The problem (9), (10) is solved analytically:

’

t at a=0,
p(t) = { sin(vV-aAt)/vV—-aXr at a<0, (13)
\ sh(vadt)/VaX at a>0;
(1 at a=0,
1 (t) = 1 cos(v/—aAt) at a <0, (14)
ch(vVait) at a>0;

a(t) = 1/(2vt +r). | .. (5)
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Thus, the two-dimensional nonstationary problem (1)—(4) is reduced to the
one-dimensional problem (11)—(15).

The interaction of convective cells caused by a simultaneous release of
several point heat pulses at neutral stratification of the atmosphere (o = 0,
ro = 0) was investigated in [11, 12]. It was shown that problem (11)-(15)
can be solved analytically. It was also shown that at a strong but physically
admissible heat release the cells spread in the direction of their motion (as
it was assumed in the formulation of the problem) and moved upwards at
a speed proportional to their size. In the process, larger cells grew in size
owing to their merging with smaller cells. The coagulation of convective
cells took place by merging of several smaller cells into a larger one. Cells
with the same buoyancy ) were almost identical, no matter how many cells
had formed them. Although these effects were obtained theoretically in
[11, 12] for the nonlinear interaction of cells in the atmosphere, they were
substantiated by some laboratory experimental data for a viscous liquid [19].
Therefore, the theory proposed is universal for cells of different scales. Also,
it was shown in [11, 12] that the analytical solutions (6)—(15) at & = 0 were
in agreement with the results of the following laboratory experiment:

Portions of a light water solution were injected into water at regular in-
tervals. Convective cells of the same buoyancy and of the same trajectory
were generated [19]. Thus, a system of three interacting convective cells
located above one another was formed. It was shown experimentally that
the upper boundary of the first cell rose at a speed v ~ \/Q/t. The sec-
ond cell during the interaction with the first one was moving upward at a
constant rather than decreasing with time speed. The upper boundary of
the third (lowest) thermal during its interaction with the thermal formed by
the coalescence of the first two thermals was moving at the same constant
speed. As a result, a cell moving at a speed v ~ \/3Q/t was formed by the
coalescence of the three similar cells. Similar mechanisms were revealed by
a theoretical investigation of the interaction of atmospheric thermals and
convective clouds and substantiated by observations [14, 15].

4. Instability of convective cells at o > 0

A criterion of instability relative to finite-amplitude perturbations was ob-
tained from the solution (11)-(15) at @ =0, rp = 0 [11, 12]. In accordance
with this criterion, the stability of a cell decreases very quickly, exponen-
tially, with its buoyancy. A hypothesis that produced a similar criterion
valid not only for & = 0, but also for a > 0 was proposed in [10-14]. Let us
try to substantiate the hypothesis for an arbitrary constant value of a. The
case of a = 0 is the most interesting one for applications, since in this case
the convection is developing. In accordance with (14), the buoyancy of a cell
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Q; at a > 0 increases with time near-exponentially due to the energy of in-
stability of the medium. The initial thermal pulses play the role of a “trigger
mechanism” for the onset of convection. Unfortunately, for @« = 0, 7o =0
exact solutions to (11)-(15) have not been obtained. It is difficult to obtain
numerical estimates for the instability of convective cells at « > 0, since in-
stability at unboundedly increasing @ may take place at external influences
that are smaller than numerical errors occurring in problem (11)—(15).

We make an attempt to obtain a stability criterion at o >0 by analyti-
cal methods. Divide the entire time interval into sufficiently small discrete
intervals: (At(i — 1), Ati), i=1,...,n. In each of these intervals, the coef-
ficient b = 2vay at the nonlinear term in (11) can be considered constant:
b = 2vap = b; = const at Ati <t < At(i+ 1). We assume that at t =0
a thermal pulse affects an unstable atmosphere and at t = t; = At a suf-
ficiently strong thermal with bucyancy Q is formed. Also, at t = t; let the
atmosphere be weakly affected with Q2 =¢ < 1. In this case, we have for
Ati < t < At(i+ 1) instead of (11) the following:

af 0%f

E+2vb,~f%=u-&—2; att=t; f=h()+hRGE), (16)

f1 is the solution of (16} at t =t;; f3 is the weak effect at t = ;.
Taking into account that for Ati < t < At(i + 1) (16) is a Burgers
equation, we solve, instead of (16), the following problem:
f= epr(f;z +¢F) : (17)
bi(1+ expQ([ (F1 + ¢F) dz)

N

where Fy, F; satisfy the following relations:

T T dF _ O°F
[F1d2=fF2dZ=1; -3—t—=uﬁz'—2—’ F=F1+F2.
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In (17), the denominator vanishes, and the solution has no sense at

E= - (exp(Ql) + ]OFI dz) / ].OF‘Z dz. (18)

Thus, € depends on t and 2. However, since fluctuations in the temperature
field can occur at any time and at any point of the convective layer, the
minimum absolute value of ¢ from (18) should be used. It corresponds to
the minimal strength of a thermal fluctuation destructing a thermal; it is

reached at TFI dz = 0 and ffo F,dz = 1. Substituting these values into
o0 —00
(18), we finally obtain:
€ =€ = —exp(—Q1). o (19)
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Weaker fluctuations do not destruct the thermal. It can be easily shown
that at certain space points the numerator in (17) tends to zero faster than
the denominator. Thus, the destruction of a cell is due to its instability
with respect to external finite-amplitude perturbations. The stronger a ris-
ing cell, the weaker the external influence that is necessary to destruct it.
The same relation for € in the solution for two simultaneous point thermal
pulses given at ¢t = 0 was obtained in [11, 12]. That the solution, however,
has an essential shortcoming: when (19) is fulfilled, it is not valid at ¢ > 0,
i.e., immediately after the injection of thermal pulses, when there are still
no motions, and all heat is concentrated at the two space points. This result
has no physical interpretation. It is evident that relations (16)-(19) do not
have this shortcoming. The reason for the fact that (19) is valid not only at
b = const, but also at b = b(t) is as follows: at ¢ > £, a cell is destructed
instantly, at the time of injection of a weak fluctuation. The continuity and
smoothness of b(t) at this time are sufficient conditions for the validity of
(19). Nevertheless, the relations do not describe the cell destruction process
itself: in this case there is no solution to this problem. A numerical solu-
tion to a similar problem was realized in the same conditions, but for the
Boussinesq equations without the simplifications of the vertical boundary
layer theory. It has been shown that the destruction of a cell in the more
comprehensive model may be due to a process of the “wave reversal” type
initiated by a collision between rising and descending cells. The process is
accompanied by an entrainment of the surrounding air into the cell which
causes its rapid dissipation. In the simplified theory described in this paper
this dissipation is considered instantaneous and called “cell destruction”. A
comparison between the theory and the calculations carried out by using a
model without the simplifications of the vertical boundary layer has shown
that the life cycle of each cell consists of two stages: the laminar (for mi-
croscale pulsations), or quasilaminar (for thermals and convective clouds),
stage and the turbulent one. At the first stage the cell spontaneously grows.
At the second stage, it instantly collapses (in the simplified model) or grad-
ually dissipates (in the more comprehensive model). The second stage can
begin (with different probability) at any instant. This is due to the insta-
bility of convective cells that determines the probabilistic properties of the
simplified model proposed.

5. Theorem on a critical value of an external
effect on a convective cell

Theorem. If a convective cell described by equations (1)-(3) with initial
conditions (4) and determined by their solution (5)-(15) att =t; > 0 is
affected by a perturbation ‘
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w = 4 p(tn) exp(~a(tn)r?/2) (),
w =~ /r)(1 - exp(-altn)r?/2) 3,
P = (4%apy(t1)/X) exp(—a(t1)r?/2) fe,

there is no solution at t > t; when € > e = —exp(—Q1),
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Here a(t1), ¢(t1), 1(t1) are determined from (13)—(15); fe(2) is a limited
function which is nonzero only on one or several intervals; ¢; is the amount of
heat in the system before the effect on the convective cell; € =+ 0; g. < 0is the
amount of heat released from the system due to the effect on the convective
cell; € > 0; € < 0. The problem formulated is the Cauchy problem for ¢ > t;,
0 <r < oo, —o0 <z < 00, in which the solution at ¢ = ¢t; — ¢ plus the
additional perturbation given at t = #; is the initial condition.

6. A statistical model of an ensemble
of convective cells

It has been observed that the sizes of convective cells in a viscous liquid differ
but slightly. The result obtained in the previous sections indicates that this
can happen when smaller cells are absorbed by larger cells, and very large
cells are destructed by neighbouring cells. We assume that the small cells
with buoyancy @ < Q,, are instantly absorbed by larger cells, and very
large cells are destructed by neighbouring cells. Then, in accordance with
(19), we assume that for the probability density of cell distribution P(Q)
the relations

0 ’
P(Q) = exp(Qm — Q), f P(z)dz =1, (20)
Qm

are valid.

However, (20) cannot be verified by measurements. Let us try to express
Q in terms of parameters which can be estimated by measurements. Con-
sider the most interesting case of a convective layer of unstable stratification.
Substituting (13), (15) at @ > 0 into (11), we obtain

of 4sinh(Valt) Of _ 9*f (21)
9t T Jar(rotovt) S 0z | 022 o
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In accordance with (12), the total amount of heat in a convective cell in-
creases with time

Q = Q. cos h(Vart). (22)

If the solution to problem (21)-(22) at Q > 1 exists, it must be close
to the solution of the problem for the case of zero vertical viscosity in (28).
The solution to (21)-(22) without vertical viscosity has the following form:

w=pzR, 9=pyzR, u=p3(1-R) at 0<z2<h, (23)

w=9%=u=0 at 2<0 or z>h. (24)

t
Here R = exp(-ar?/2), h = 2v\/2Q/p, p = 1/ [apdt, py = app, p; =
0

(aw/A)p, p3 = —(@/r)p. The relation between @ and the other parameters
is complex in this form. Find an approximate form of the solution (23),
(24) late in the development of cells, when the probability of their collapse

is high. We assume that in this case t > 1/val, t > rg/!2v). Then
sin h(Vadt) & cosh(Vadt) ~ exp(Vart), p = 2vart/exp(Valt), a® ~
1/(4wt). Substituting the approximate values into (23), (24), we obtain

w=vVoaAzR, d=azR at 0<z<h, (25)
w=9=0 at 2<0 or z>h, h=2(Qu)"/?(a))"V/" (26)

It is easily seen that

Winax = 2(QV) Y2 aM)V4,  Opay = 2(Qu) 2PN/, (27)
H= wmax'ﬂmax = 4”aQa E = WyaxWmax = 4”(0"\)1/2Q1 (28)
Q? = aAh?/(16v%) = gkABR®/(160%) = Ra,/16, (29)

where Wmax, Pmax are equal to w, ¥ at z = h and at r = 0; A8 = 6,5 —
6:=0 = ah; Ra, is the Rayleigh number for a cell with buoyancy Q.

Thus, we obtained a simple relation between Q and h, Wmax, Pmax, H,
which makes it possible to obtain the following expressions for the densities
of distributions of convective cells:

P(Y;)dY; = 2(Y; - X;)/D} exp(~((Y: - X:)?/D;)?)dY;, i=1,2,3;
P(H)dH = 1/Hpexp(—(H — Hy,)/Hp)dH,
P(E)dE = 1/Eoexp(~(E — Eyn)/Eo)dE,
where Y1 = A, Y2 = Wnax, Y3 = Ymax; D; are variances of ¥;: Dy = hg =
2()/2(aX)~V4, Dy = wo = 2(v)1/2(aX)V/4, D3 = 9y = 2(v)/2a3/1\-1/4;

Xy = hm = QY ho, X3 = wn = QY ?wo, X3 = 9, = QY*00; Ho = 4va,
Hm = QmHO, Eg = 4V(a')\)1/2,_E = QmEO



36 V.M. Malbackov

By averaging over the ensemble,

i':/Y,- (Y)dY;, H= fHP H)dH, E= fEP(E . (30)
X Hn

we obtain h = hQ(Q]"{2 4+ 712/2), Bmax = W (Ql/2 + 71/2/2), Fmax =

Yo (Qni Y24 212/9), H = Ho(Qm + 1), E = Eo(Qm + 1). Now it is evi-
dent tha,t Qm can be determined in terms of the average values and their
variances: ’

Qm+1=H/Hy=E/Es;  Qm+7"%/2=(Yy/D)%.  (31)

It is clear that H and E are proportional to the convective fluxes of heat
and momentum through the upper boundary of a convective cell into the
surrounding atmosphere. With a horizontal distribution of cells we average
over a horizontal line and obtain

H=4Cva(Qn+1), E=4Cv(aX)’*(Qm +1), (32)

where C is inversely proportional to the average distance between the cells.
If the cells are sufficiently close to each other, C' x 0.7.

If a convective perturbation occurs not in an atmosphere at rest, but
inside a larger convective cell, then, instead of a = df/dz, we take ay =
003/0z, where 8, is the temperature in this larger cell (the subscript 2
denotes the distributions of a convective ensemble of a second hierarchical
level).

We study the behaviour of several interacting cells of the second hierar-
chical level located above each other. The heat and momentum fluxes due
to the microscale convection in this ensemble are parameterized as

H = 4Cv{(Qm + 1)86,/0-, (33)
E = 4Cv(Qm + 1)0w,/dz, (34)
du = 4Cv(Qm + 1)80/dz, (35)
wu = ACv(Qm + 1)0w,/dz. (36)

Relation (33) was obtained without the use of additional hypotheses. Since
this model does not take into account the lateral interaction of cells, the
horizontal fluxes of heat and momentum can be calculated only roughly.
Therefore, we take (35), (36) as a hypothesis supplementing the hypotheses
used in the statement of the problem and the construction of the statistical
model. The form of (35), (36) is similar to that of (33), (34). For an
ensemble of interacting cells of the second hierarchical level located above
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each other one should use equations similar to (1)-(3), in which u, w, 9,
v, a are replaced by us, ws, ¥, v, = 4Cv(Qm + 1) + v, a3. Here ay is
responsible for temperature stratification with allowance for the averaged
convection of the first hierarchical level. Clearly, since in the equations of
vertical boundary layer E = (a/))'/2H, relation (34), as well as relation
(33), is obtained without any additional hypotheses. Relations (33)-(36)
are valid for the subsequent hierarchical levels. Thus,

hivi _ po-1/a Wipn _ /s Wign _ Vivr _ ; o3/4
T = LSt ' w; _LSz ’ U = La 7917 - LS: ' (37)
where S; = o411/, L = Q(C(Qm + 1))1/2.

Now let us define @),,. Unfortunately, the convective turbulence of the
first hierarchical level in the atmosphere does not differ from the dynamic
turbulence. Therefore we can use the data of an experiment, in which con-
vection of water in a wide saucepan was studied [7]. The saucepan was
heated by water up to 100°C from below. The heating was done in such a
way that the amount of heat coming from below was equal to its outflow
through the upper and side walls of the saucepan. At a maximal thickness
of the convective layer of 10 cm the effect of the bottom and side walls on
the convection was minimal. Then the average velocity of the very small
particles suspended in water was 1.8 bk s~1, and its variance constituted
20%. Assuming that D;/w = 0,2 and substituting it into (30), we obtain

Qm ~ 25. (38)

Assuming that v = 10~2bk?s~!, a = 1°C s7!, A\ =gk =3 bk b=1(°C)~!, we
have @ = 2(QmV)"/2(a))/4 & 1.8 bk s~!, which is in agreement with the
measurements [7].

7. Conclusioh

The results obtained make it possible to conclude that some processes of
nonlinear interaction, namely, the coagulation of cells and the process of
their instability due to external factors are responsible for the disordered
structure of convective ensembles. Such external factors can be neighbour-
ing cells and numerical errors. At an unlimited spontaneous growth of cells
their sensitivity to perturbing factors increases and, finally, they collapse
under the effect of the random factors. Computer simulation of the tur-
bulent regimes by using the Navier-Stokes equations [6], the Boussinesq
equations [2, 4, 6], and the equations of deep [16] and shallow [3] convection
make it possible to assert that an isolated pulsation is an eigensolution of
the corresponding equations, and turbulence is generated by the nonlinear
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interaction between pulsations. The proposed simple analytical, rather than
finite-difference, model confirms this.

The theory, as well as the calculations carried out by using a more com-
prehensive model without the simplifications of the vertical boundary layer
have shown that the life cycle of each cell consists of two stages: the lami-
nar (for microscale pulsations) or quasilaminar (for thermals and convective
clouds) stage and the turbulent one.

At the first stage the cell spontaneously grows. At the second stage it
instantly collapses (in the simplified model) or gradually dissipates (in the
more comprehensive model). The second stage can begin (with different
probability) at any instant. This is due to the instability of convective
cells that determines the probabilistic properties of the simplified model
proposed. :

The linear dimensions of convective cells of the first hierarchical level,
in accordance with (30), are approximately 10 cm. These cells produce the
cells of the second hierarchical level with dimensions which are, in accordance
- with (31), greater by approximately an order of magnitude. This rule is valid
also for the cells of the next hierarchical levels.

In accordance with the theory and the observational data, atmospheric
convection develops in the following way. First, a convective ensemble is
formed over the underlying surface heated by the Sun. This ensemble con-
sists of cells which range in size from several centimeters to several decime-
ters. Such an ensemble often has the form of a haze over an arable or asphalt
surface. As the lower layer is heated, the cells of the next hierarchical lev-
els are produced. Thus, in accordance with the theory, large thermals are
convective cells of the fourth and fifth hierarchical levels. If a moist layer
with unstable stratification is over a dry unstable layer, convective clouds of
various types are formed. They often merge with large thermals of the lower
layer. These convective clouds are cells of the fifth and sixth hierarchical
levels. This result is in agreement with indirect evidence of numerous obser-
vations. Thus, in accordance with [14, 15], the convective clouds consist of
fairly large cells. This causes an increased danger for an aircraft that finds
its way into such a cloud. '

The two local maxima in the spectra given in [10] in Figures 4, 5, and 8
correspond to these two hierarchical levels of cells. The comments given to
the figures confirm the conclusions of the theory. The process of increasing
of cells continues until they fill the entire unstable layer. The total effect of
the convective ensemble is in the following: the unstable stratification of the
convective layer becomes dry and moist- adiabatic. The lateral interaction
of cells as well as the background large-scale wind affect the formation of
larger cells. Some mechanisms of this effect leading to the formation of
quasiordered cells with a horizontal scale larger than 10 km are considered
theoretically in [9].
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The theory can be used in the construction of simplified three-dimensi-
onal models of convective ensembles [9] to parameterize atmospheric con-
vection [11] in models of general atmospheric circulation.
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